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Preface

The discovery and development of efficient chemical reactions and processes 
converting fossil resources into a broad range of fuels and chemicals is one of the 
most significant scientific developments in chemistry so far. The key to efficient 
chemical processes is the control of the rates of reaction. This control is usually 
provided by a catalyst—a substance that can facilitate a chemical reaction and 
determine the product distribution. The science of catalysis is the science of 
controlling chemical reactions.

There are many challenges to the science of catalysis that need to be met over the 
coming years. A sustainable future calls for the development of catalytic processes 
that do not rely on a net input of fossil resources. This can only be achieved if we 
discover new catalysts that can efficiently utilize the energy input from the sun or 
other sustainable sources to synthesize fuels as well as base chemicals for the 
production of everything from plastics to fertilizers. It also requires more selective 
processes with fewer waste products and catalysts made from Earth-abundant 
elements. This represents a formidable challenge. This textbook describes some of 
the fundamental concepts that will be needed to address this challenge.

Our basic assumption is that the discovery of new catalysts can be accelerated 
by  developing a framework for understanding catalysis as a phenomenon and by 
pinpointing what are the most important parameters characterizing the chemical 
properties of the catalyst. We will concentrate in this book on heterogeneous catalysis, 
that is, catalysts where the processes take place at the surface of the solid. We will 
develop a systematic picture of the surface-catalyzed processes from the fundamental 
link to surface geometry and electronic structure to the kinetics of the network of 
elementary reactions that constitute a real catalytic process. The end result is a theory 
of variations in catalytic activity and selectivity from one catalyst to the next that will 
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allow the reader to understand the present literature and to make predictions of new 
catalysts. The latter is aided by the consistent involvement of public databases of 
surface chemical processes.

The text is aimed at senior undergraduate and graduate students but should be a 
good guide for any researcher interested in the science and technology of heteroge-
neous catalysis.

We are grateful to a large number of colleagues for providing material for the 
book and for providing important feedback during the writing: rasmus Brogaard, 
Karen chan, Søren Dahl, Lars Grabow, Jeff Greeley, Heine Hansen, Anders 
Hellmann, Jens Strabo Hummelshøj, Karoliina Honkala, Tom Jaramillo, Hannes 
Jonsson, John Kitchin, Adam Lausche, Nuria Lopez, Nenad Markovic (for providing 
the unpublished results in figure 11.10), Andrew Medford, Poul-Georg Moses, Anders 
Nilsson, Hirohito Ogasawara, Andrew Peterson, Jan rossmeisl, Jens Sehested, 
Venkat Viswanathan, Aleksandra Vojvodic, and Johannes Voss. Our thoughts and 
ideas of this book has been influenced by an additional number of people including 
flemming Besenbacher, charles campbell, Ib chorkendorff, Bjerne clausen, claus 
Hviid christensen, Bjørk Hammer, Karsten Jacobsen, Bengt Kasemo, Norton Lang, 
Bengt Lundqvist, Alan Luntz, Manos Mavrikakis, Horia Metiu, Yoshitada Morikawa, 
Matt Neurock, Lars Pettersson, Jens rostrup-Nielsen, robert Schlögl, Henrik 
Topsøe, and Art Williams. We are also grateful to the students of the early versions of 
the course “Basic Principles of Heterogeneous catalysis with Applications in Energy 
Transformations” at Stanford University for many good suggestions.

Stanford, July 2014 Jens K. Nørskov 
felix Studt 

frank Abild-Pedersen 
Thomas Bligaard
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Heterogeneous Catalysis  
and a sustainable Future

1

The processes that convert fossil resources into fuels and chemicals are essential to 
modern life. It is, however, also clear that these technologies result in an increased 
stress on the environment. Even the most efficient processes today result in 
pollution by by-products. While many chemical production processes have become 
“cleaner” over the past few decades, the world’s consumption of fossil carbon 
resources has continued to increase. This has resulted in a sharp increase in atmo-
spheric carbon dioxide levels, and because carbon dioxide is a greenhouse gas, the 
anthropogenic CO

2
 emissions have been linked to global climate changes, increased 

temperatures, melting of the glaciers on all continents, rising sea water levels in the 
oceans, and the observation of more extreme weather variations across the globe. 
Since the global population is rapidly growing and many countries are becoming 
increasingly industrialized, the global energy demand will continue to rise over the 
next century.

There is a growing consensus that the world’s increased demand for fuels and base 
chemicals will need to be met by more so-called “carbon-neutral” technologies. This 
calls for new catalytic processes and for catalytic technologies that focus on preven-
tion rather than on remediation.

One central sustainable energy source, which we need to harvest much more effi-
ciently and at a much larger scale than we do today, is sunlight. The annual global 
energy consumption could be covered by the sunlight striking the Earth within about 
1 h assuming that the energy could be efficiently harvested. Consider therefore the 
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challenge of turning the energy from sunlight into transportation fuels or base chemicals 
for industry (see Fig. 1.1). Irrespective of whether the sun’s energy is harvested by 
photovoltaic cells, through the use of biomass, wind turbines, wave energy con-
verters, or photoelectrochemical cells, one or more catalysts are needed in order to 
transform the harvested energy into a useful fuel or chemical. If the goal is to substi-
tute a significant fraction of the global transportation fuel or of base chemicals for 
industry, the catalysts involved have to be made from elements that are abundant 
enough that large-scale implementation of the technology can be carried out at a rea-
sonable level of resource utilization and cost.

Traditionally, the field of catalysis is divided into three areas: heterogeneous, 
homogeneous, and enzyme catalysis. Heterogeneous catalysts are present in a phase 
different from that of the reactants; typically, the reactants are in the gas or liquid 
phase, whereas the catalyst is a solid material. Homogeneous catalysts operate in 
the same phase as the reactants, and enzyme catalysts are specialized proteins. The 
chemically active part of enzymes is often a tiny part of the protein, and enzyme 
catalysis can be viewed as a special kind of heterogeneous catalysis.

P
hotoelectrocatalysis

Electrocatalysis

C
atalysis

Methanol
Ethanol
Hydrogen
Hydrocarbons
Ammonia

Figure 1.1 Illustration of the role of catalysis in providing sustainable routes to fuels and 
base chemicals. Whether the energy flux from sunlight is harvested through biomass, through 
intermediate electricity production from photovoltaics or wind turbines, or directly through a 
photoelectrochemical reaction, the process always requires an efficient catalyst, preferably 
made of earth-abundant materials. Taken from nørskov and bligaard (2013) with permission 
from Wiley. (See insert for color representation of the figure.)
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Heterogeneous catalysts have the desirable property that after reaction they are 
easily separated from the reactants and products. This is an important reason why 
heterogeneous catalysts are often preferred in industry, in particular for high-volume 
products, for instance, in the energy sector. For heterogeneous catalysts, the chemical 
reactions take place at the surface of the material. For that reason, heterogeneous 
 catalysts are typically extremely porous materials so that the surface area is large. In 
some cases, the catalytic material itself can be made with a high surface area. In other 
cases, a relatively inert material, the support, is used to stabilize nanoparticles 
(2–20 nm) of the active material (Fig. 1.2).

Homogeneous catalysts are typically relatively small molecules that are dissolved 
in the same solution as the reactants and products. Molecular catalysts are often sim-
pler to study, since the active sites on the catalytic molecules can be synthesized with 
atomic-scale accuracy, and a very detailed understanding of many homogeneously 
catalyzed processes has therefore been developed.

The focus in the present textbook will be on the fundamental concepts that are 
needed to understand how solid surfaces act as catalysts. We will introduce a molecular-
level understanding of the way surfaces catalyze chemical reactions, which allows the 
reader to understand why one material is a better catalyst than another for a given 
reaction. The aim is not to give a complete overview of the types of catalysts or 
catalytic processes or to give a detailed introduction to the experimental and computa-
tional methods that are used to study them. a number of recent textbooks cover these 
areas very well; see the “Further reading” list at the end of the chapter. We will use a 
number of simple catalytic processes as examples throughout but only in order to 
develop the general rules according to which heterogeneous catalysis works.

5 nm

Figure 1.2 High-resolution transmission electron microscopy image of a supported 
ru catalyst for ammonia synthesis recorded at 552°C and 5.2 mbar in a gas composition of 
3:1 H

2/n2. a ru particle with a well-formed lattice and surface facets is seen on an amorphous 
support consisting of bn. a ba–O promoter phase is observed on top of the ru particle. 
Taken from Hansen et al. (2001) with permission from The american association for the 
advancement of Science.
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solar Fuels

Imagine that we could use renewable 
electricity, which could come from any of 
several sources (hydro, solar, wind, geo-
thermal, and others), to directly reduce 
CO

2
 to hydrocarbons and water. Then, we 

would have a renewable source of fuels for 
the transportation sector as well as a way of 
storing energy from intermittent resources. 
The problem is that there is presently no 
known catalyst that can do this efficiently. 
Metallic copper has been demonstrated 
to produce high (>50%) yields of hydro-
carbons at reasonably high (5 ma cm2) 
current densities (Hori, 2008). but the 
electrochemical potential needed to make 
the process run is prohibitively high.

It turns out that each of the 8 electrons needed to reduce a CO
2
 molecule to the 

simplest hydrocarbon, CH
4
 (CO

2
 + 8(H+ + e−) → CH

4
 + 2H

2
O), need on the order 

of 1 V in extra potential relative to what is needed from a purely thermodynamic 
point of view in order to make the process run (Kuhl et al., 2012). That means that 
8 eV per CO

2
 molecule or ~800 kJ/mol is lost in the electrocatalytic reduction of 

CO
2
. a much better catalyst is clearly needed.

Electrolyte

Cathode Anode

CO2

e– e–

H+

H+

H+

CH4 + H2O

Electrical potential created by photon
or from a renewable electricity source.

H2O

O2
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The PoTenTial energy Diagram

2

The central theme in catalysis is the effect of the catalyst on the rate of a chemical 
reaction or on the product distribution, which is given by the relative rates of different 
reaction pathways. You can say that catalysis is all about what determines the 
chemical kinetics. A good catalyst is typically one that gives a high rate and a high 
selectivity toward the desired product. The reaction rate constant, k, for an elementary 
reaction is often written as an Arrhenius expression in terms of a prefactor, υ, and an 
activation energy, E

a
:

 k e
E

k T=
−

υ
a

B  (2.1)

where k
B
 is the Boltzmann constant and T is the absolute temperature. Variations in 

the activation energy, when, for example, one catalyst or reactant is substituted with 
another or when a reaction proceeds through two different reaction mechanisms, are 
typically large (0.5–2 eV), while the thermal energy, k

B
T, is small (typically ranges 

from k
B
T = 0.0257 eV at T = 298 K to k

B
T = 0.1 eV at T = 1160 K). The rate constant 

is therefore very sensitive to the size of the activation energy. We will return with a 
more detailed discussion of how the Arrhenius expression comes about in Chapter 4. 
For now, it suffices to note that any discussion of reaction rates must start with a 
discussion of the origin of activation energies. For that reason, the starting point of 
this textbook is an understanding of the potential energy diagram (PED) for surface 
chemical transformations.
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2.1 aDsorPTion

We will start by considering the simplest possible potential energy diagrams: 
those that describe the elementary step of adsorption of a single atom or molecule 
on a surface. When an atom or a molecule (the adsorbate) approaches a surface, it 
will start interacting with the electronic states of the solid. At long distances, 
weak bonding called physisorption dominates. This is due to van der Waals forces, 
which are purely quantum mechanical in nature and which are relatively long 
ranged. They occur due to an attraction between mutually induced dipoles of the 
electron clouds surrounding the atom or molecule and in the surface. Closer to the 
surface, when the electron clouds of the adsorbate and surface atoms begin over-
lapping, chemical bonds may form. This stronger form of adsorption is called 
chemisorption. The strength of the interaction is measured by the change in poten-
tial energy of the system as a function of the distance, z, of the adsorbate above 
the surface:

 
∆E z E z E( ) = ( ) − ∞( )pot pot  (2.2)

In principle, the adsorption energy can be measured, and there are examples where this 
has been done, typically by inferring an adsorption energy from the measured rate 
of desorption (temperature-programmed desorption (TPD)). Another way to more 
directly measure adsorption energies is to measure the temperature increase of a 
surface as it becomes covered by adsorbates (calorimetry). There are, however, quite 
few systematic experimental data available. We have therefore chosen throughout 

R versus k
B

If the reaction and activation energies are expressed per amount of substance (in 
moles), then the Boltzmann constant k

B
 (approximately 8.61·10−5 eV/K) should 

be substituted with the gas constant R (approximately 8.31 J/(mol·K)). Since 
we take an “atomic-scale” viewpoint throughout the book, expressing energies 
per atom, molecule, or elementary reaction, we shall be utilizing the Boltzmann 
constant.

van Der Waals inTeracTions

The weak bonding due to induced dipole–induced dipole interactions go by sev-
eral names. Sometimes, the interaction is referred to as London dispersion forces, 
and in other parts of the literature, they are called van der Waals forces. We shall 
here not dwell at the more detailed distinction.
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this book to illustrate phenomena in terms of energies that are calculated through 
an approximate solution of the Schrödinger equation based on Kohn–Sham density 
functional theory (DFT). While DFT is not always in quantitative agreement with 
experiment, the values for adsorption energies on transition metal surfaces are typi-
cally within 0.1–0.2 eV of experiment in the cases where this has been tested. Trends 
from one catalyst to the next are usually described much better. The use of theoret-
ical interaction energies allows us to always discuss surface reactions and catalysis 
in terms of the energetics, that is, at the most fundamental level. We will introduce 
experimental data where possible to illustrate important phenomena and to place the 
discussion on a firm experimental footing.

The adsorption energy is measured relative to the situation where the adsorbate is 
far away from the surface, that is, relative to the energy of the clean surface and the 
free adsorbate. This convention, which will be used throughout the book, means that 
negative adsorption energy signifies the formation of a chemical bond (the system 
being stabilized by formation of the bond). Two examples of potential energy dia-
grams for adsorption are shown in Figure 2.1.

The potential energy diagrams (PEDs) (e.g., Fig. 2.1) contain significant information 
about an adsorption system. The minimum value of the PED defines the adsorption 
energy, since it gives the energy gained by adsorption. The location of the minimum 
defines the equilibrium distance of the adsorbate above the surface. An argon (Ar) 
atom has a closed outermost electron shell and therefore typically does not form 
chemical bonds to a metal surface. It only physisorbs with an energy of approxi-
mately −0.1 eV on a close-packed Cu surface. A hydrogen (h) atom, on the other 
hand, forms a strong chemisorption bond to the same surface. The potential energy 
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0.75

Figure 2.1 Left: PED for the physisorption of Ar in the threefold position of the Cu(111) 
surface. The potential energy is shown as a function of the distance between the Cu surface and 
the adsorbate. The energy of the adsorbate at a distance of 6 Å is chosen as a reference. Due to 
the filled outermost electronic shell on the Ar atom, this species does not chemisorb to the 
surface at all, and the shallow physisorption minimum is clearly visible. Right: PED for the 
chemisorption of h on Cu(111) in ontop, bridge, and threefold position.
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also depends on the position of the adsorbate parallel to the surface. The most stable 
position of the h atom is found to be in a site where it has three Cu neighbors. The 
adsorption energy of −2.6 eV is comparable to the formation energy of an h

2
 mole-

cule from h atoms of −2.5 eV per atom. It is thus energetically favorable for an h
2
 

molecule to dissociate over a Cu(111), which is an important feature in understanding 
how and why a Cu surface can act as a catalyst, for instance, in the synthesis of meth-
anol from CO and h

2
, 2h

2
 + CO → Ch

3
Oh.

The PED for a molecule approaching a surface is considerably more complicated 
owing to the fact that it will depend not only on the position of the molecule relative 
to the surface but also on the intramolecular degrees of freedom as well as  the  
rotational orientation of the molecule relative to the surface. Figure 2.2 shows the 
two-dimensional potential energy surface (PES), ΔE(z,R) for h

2
, dissociation over 

Cu(111) as a function of both the distance to the surface, z, and the h–h  distance, R, 
for the molecule positioned parallel to the surface. This PES defines a surface 
chemical reaction. There are two minima, one where the molecule is far from the sur-
face and one where the molecule has dissociated and the h atoms are well separated 
and bound to the surface. A considerable energy barrier separates the two minima. 
This can be observed experimentally by monitoring the probability for dissociation of 
h

2
 molecules scattering off a Cu surface as a function of the kinetic energy of the 

molecule (see Fig. 2.3). Only molecules with kinetic energies above or just below 
(due to quantum mechanical tunneling) the energy barrier will be able to dissociate.

It is useful to define the minimum energy path (mEP) for a reaction. This minimum 
path is the lowest energy pathway from one potential minimum on a PES to another 
(see the box “minimal Energy Path”). The definition is illustrated in Figure 2.2. The 
black crosses in the left figure mark the mEP from one local minimum to the other. 
Plotting the interaction energy as a function of the distance along the path leads to 

energy uniTs

Throughout this book, we will be using eV (the kinetic energy gained by an 
elementary charge accelerated through a potential of 1 V) as the energy unit. It 
is perhaps not a natural energy unit for chemical processes, since it is neither an  
SI unit (which would be joule) nor is it the typical atomic unit (hartree). It is,  
however, a very convenient unit to use when adopting an “atomic-scale” point of 
view of catalysis. Typical covalent bond strengths in molecules are on the order  
of 1–10 eV, for instance, and physisorption energies are on the order of 0.1–1 eV. 
Likewise, a reaction rate of 1 turnover per second corresponds to an activation 
energy of approximately 0.75 eV at room temperature. In terms of other energy 
units, 1 eV per atom or molecule = 96.49 kJ/mol, 23.06 kcal/mol, or 0.03675 
hartree.
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Figure  2.2 (right). This coordinate is often termed the reaction coordinate. The 
one-dimensional (1D) representation of the potential energy curve along the reaction 
path is a very convenient way of showing the energy variation of a complete 
elementary reaction. It directly identifies the activation energy, E

a
, in an Arrhenius 

expression for the reaction rate (see the box “minimal Energy Path” and Chapter 4).
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Figure 2.3 measured dissociation probability for a monoenergetic beam of h
2
 molecules 

impinging on a Cu(111) surface as a function of their kinetic energy. Adapted from Rettner 
et al. (1995).
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Figure 2.2 Left: PES for h
2
 dissociation over Cu(111). The potential energy of the 

system is shown as a function of the Cu–h
2
 and h–h distance, respectively. h

2
 far from the 

Cu surface has been chosen as a reference. The lowest potential energy path for h
2
 splitting 

is marked with black crosses. Right: PED for h
2
 dissociation where the lowest potential 

energy (from the figure on the left) is plotted as a function of the reaction path. The PES is 
calculated without relaxations of the hydrogen and copper atoms. If these are taken into 
account, a slightly lower barrier of 0.78 eV is found (see CatApp). (See insert for color 
 representation of the figure.)
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2.2 surFace reacTions

The dissociation of h
2
 over a Cu surface discussed earlier is an example of an 

elementary surface reaction. Other types of elementary surface reactions are illus-
trated in Figure 2.4. After reactants are adsorbed and perhaps dissociated, they will 
diffuse and recombine to form new molecules before the product is desorbed into the 
surrounding gas or liquid phase. For each of these different elementary reaction 
steps, we can define a PES and a 1D PED.

A large number of such PEDs have been calculated and a web-based database has 
been created, which can be accessed through an Internet browser. The website http://
suncat.slac.stanford.edu/catapp/ features a list of hyperlinks to the available versions 
of the tool together with a list of references to the scientific data it employs. Using 
the application, one can choose a surface and an elementary reaction step and be 
presented with a reaction path reporting the reaction and activation energy. Examples 
of such 1D PEDs from the CatApp are shown in Figure 2.5.

One can combine a series of elementary reactions steps into a PED for a complete 
catalytic process. Let us take the ammonia synthesis reaction as an example. The 
overall reaction can be written as

 N H NH2 2 33 2+ → ,

minimal energy PaTh (meP)

The mEP between two stationary points on the PES can more formally be 
defined as the continuous and smooth path among all possible paths connecting 
the two stationary points, which satisfies the two following properties:

1. It is a path of least action: At any point along the path, the gradient of the 
potential has no component perpendicular to the path.

2. The highest potential energy along the mEP is equal to or lower than the 
highest potential energy along all stationary paths.

The mEP defined in this way will typically have an associated highest potential 
energy in a point where the derivative of the potential is zero, both perpendicular 
to the path and along the path (since the point is a maximum along the path). First, 
we assume that the second derivative is positive along all directions perpendicular 
to the path in the highest energy point (since we could otherwise minimize along 
these directions). Next, we also assume that the second derivative along the path 
is negative in this point—that the highest energy is not attained in a plateau. Then, 
we can conclude that the highest energy point along the path is a first-order saddle 
point. We shall for now take the energy difference between the initial state of the 
reactant and the first-order saddle point as a measure for the activation energy. In 
Chapter 4, we shall address through the use of “transition state theory” why this 
is a reasonable approximation.

http://suncat.slac.stanford.edu/catapp/
http://suncat.slac.stanford.edu/catapp/


12 ThE POTENTIAL ENERgY DIAgRAm

consisting of the following elementary reaction steps:

 1. N N2 2 2+ →* *

 2. H H2 2 2+ →* *

 3. N H NH* * * *+ → +
 4. NH H NH* * * *+ → +2

 5. NH H NH2 3* * * *+ → +
 6. NH NH3 3* *→ +

In Figure 2.6, we show the combined PED for the full ammonia synthesis reaction on 
a stepped Ru surface. That the initial and final states of the catalyst are the same and 
the net result is that the overall reaction has run once. The potential energy difference 

Ru(0001) Ru(0001step)

0.40 eV1.7 eV

N2

N2
N* + N* N* + N*

–0.10 eV

Catal. Lett. 141, 3, 370–373 (2011) Science 307, 555 (2005)

–0.82 eV

Figure 2.5 These screenshots from the CatApp (http://suncat.slac.stanford.edu/catapp/) 
show examples of elementary reaction PEDs that can be obtained from this tool. Left and 
center: N

2
 splitting on close-packed and stepped Ru(0001), respectively. Right: select view of 

the CatApp. here, the user can choose the reaction and surface parameters from drop-down 
menus. Taken from hummelshøj et al. (2012) with permission from Wiley.

Adsorption

Desorption

Diffusion Dissociation

Recombination

Figure 2.4 Illustration of the elementary reaction steps on surfaces. (See insert for color 
representation of the figure.)

http://suncat.slac.stanford.edu/catapp/


DIFFUSION 13

between the initial and final states is the reaction energy of ammonia synthesis. In the 
case of ammonia synthesis, the reaction energy is −1.8 eV. If we take zero-point 
energy (ZPE) contributions (we will discuss this and other energy contributions in 
Chapter 3) into account, the reaction energy is −1.00 eV.

The PED for ammonia synthesis illustrates the basic principle by which a catalyst 
works. N

2
 is an extremely stable molecule. It is inert in the gas phase, and for hydrogen 

to attack it, the N–N triple bond must first be activated or split. To split the triple 
bond costs 9.76 eV in the absence of a catalyst, and that is why gas-phase ammonia 
synthesis is only possible at extremely high temperatures such as in lightning or in 
electrical arcs. The role of the catalyst surface is to provide stabilization of the N 
atoms during and after dissociation of the molecule. In the presence of a Ru catalyst, 
there are no activation energies larger than approximately 1 eV. In the presence of a 
catalyst, ammonia can thus be formed at much more moderate temperatures. We will 
return to a more quantitative analysis of this example later in the book.

2.3 DiFFusion

Diffusion is another of the elementary steps in surface chemical reactions, and we 
can define a PES for such processes as well. Figure 2.7 shows an example for the 
diffusion of a h atom over the Cu(111) surface. We already established in Figure 2.1 
that hydrogen adsorption is strongest in the threefold site, followed by bridge 
(twofold) and ontop (onefold) adsorption. This can be seen from the PES in Figure 2.7 
as well. Importantly, these findings show that hydrogen diffusion from one threefold 
site to another can easily occur over the bridge site with a very small diffusion barrier 
on the order of 0.2 eV.

It is generally so that diffusion barriers for simple adsorbates on metal surfaces are 
not much higher than 0.5 eV. This results in diffusion being very fast at temperatures 

0

N–N

2N*

2H*

2H*

2H*

N–H
HN–H

HN–H
N–H

NH3des

NH3desH2N–H

H2N–H
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–2

–3

–4

Reaction coordinate

E
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y 
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)

Figure 2.6 PED for ammonia synthesis on the stepped Ru(0001). The numbers corre-
spond to the six different reaction steps that are defined earlier. The data for the six reaction 
steps has been obtained from CatApp and “glued” together to yield the reaction diagram.
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above 300 K where most industrial catalytic processes take place. If, however, there 
are high coverages of adsorbates, such that there are no free sites available to diffuse 
into, this picture may change. It has been found experimentally and by DFT calcula-
tions that for adsorption on metal surfaces, activation barriers for diffusion are typi-
cally of the order of 10–15% of their adsorption energy. This is illustrated for a range 
of adsorbates in Figure 2.8. It can be understood as a consequence of the fact that 
during diffusion the surface–adsorbate bond is only “partially broken,” and hence, 
only a small fraction of the maximum adsorption energy is lost when moving along 
the diffusion path.
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)
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Figure 2.7 PES of h diffusion on Cu(111). The potential energy is plotted over part of the 
Cu surface area. h adsorbed in the threefold position has been chosen as the reference.
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Figure 2.8 Diffusion versus adsorption on metal surfaces. The diffusion barriers for a 
range of different adsorbates are plotted as a function of their adsorption energy. Adapted from 
Nilekar et al. (2006). (See insert for color representation of the figure.)
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On metal oxide surfaces and other inorganic compound catalysts, where the dis-
tance between adsorption sites are larger than on metal surfaces, diffusion barriers 
are often found to be larger. This means that the mobility of adsorbates on the surfaces 
of compounds can become important for the overall reaction rate.

2.4 aDsorbaTe–aDsorbaTe inTeracTions

The adsorption energy will in general depend on the presence of other adsorbates on 
the surface. Figure 2.9 shows the interaction energy between two O atoms on a Pt 
surface as a function of the distance between them. The O atoms are always in the 
same local configuration surrounded by three Pt atoms. When the O atoms get close 
to each other, so that they bond to the same platinum atoms, their adsorption energies 
become considerably weaker.

The dominant adsorbate–adsorbate interaction for O atoms on the close-packed Pt 
surface is the repulsion at short distances. This is typically the case for strongly che-
misorbed adsorbates on metal surfaces. A repulsion at short distances means that the 
adsorption bond becomes weaker with increasing coverage. This is an important 
contribution to the adsorption energy, which often keeps the coverage of adsorbates 
limited to less than a monolayer.

If there are N
0
  surface sites on a clean surface and we adsorb N adsorbates on that 

surface, we define the fractional coverage as θ = N/N
0
. In terms of this coverage, the 

average adsorption energy is defined as
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Figure 2.9 Interaction energy between two O atoms on a Pt(111) surface as a function of 
the distance between them. The energy of the oxygen atoms sitting far from each other on 
Pt(111) has been selected as the energy reference. The surface sites are shown in the inset for 
nearest neighbor (nn), next nearest neighbor (2n), and third nearest neighbor (3n).
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where the energies entering this expression are for a surface with N adsorbates, 
E

surf. + N * ads.
; for the clean surface, E

surf.
; and for the adsorbate in vacuum, E

ads.
. Since 

the average adsorption energy varies with the coverage, we could consider it a result 
of integrating up a differential adsorption energy, ΔE

diff
(θ), from zero coverage up 
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ΔE
diff

 measures the adsorption energy of the “last adsorbate.” Figure 2.10 shows the 
variation with coverage of the average and differential adsorption energy of O on a 
close-packed Pt surface. The adsorption energy increases (the bond becomes weaker) 
steadily for coverages of 0.25 monolayers and above.

There can also be attractive interactions between adsorbates that are not sitting 
directly in the vicinity of each other. At low temperatures, this can lead to the 
formation of ordered patterns. A repulsive interaction can also lead to ordered 
structures, since the adsorbates form the structure where their mutual distance is 
maximized at a given coverage. This is illustrated in Figure 2.11 for O adsorption on 
Pd(111) at 0.25 mL coverage.

Repulsive interactions between two different kinds of adsorbates can also lead to 
pattern formation. Consider, for instance, CO and O adsorbed on a Pd surface. These 
could, for example, be found on the surface of a car catalyst where CO is oxidized to 
CO

2
. If the CO–O repulsion is stronger than the O–O and the CO–CO repulsion, then 

the O atoms and the CO molecules will, at high coverage, tend to clump together in 

–1.0

–1.5

–2.0

–2.5

0.1 0.2

D
if

fe
re

nt
ia

l a
ds

or
pt

io
n 

en
er

gy
 (

eV
)

0.3 0.4

Oxygen coverage

Experiments

Theory

–1.0

–0.5

–1.5

–2.0

–2.5
1/16 1/9 1/4

1/3

1/2

3/4

1

0.25 0.50 0.75

Oxygen coverage

A
ve

ra
ge

 a
ds

or
pt

io
n 

en
er

gy
 (

eV
)

Figure 2.10 Left: Average adsorption energy of oxygen on Pt(111) as a function of cov-
erage (from theory). Right: measured differential adsorption energy vs. coverage on the 
Pt(111) surface (black dots). Theoretical differential heats of adsorption as derived from the 
calculations shown in the left figure is included for comparison (grey line). Figure adapted 
from Fiorin et al. (2009) and Karp et al. (2012).
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separate islands to minimize the length of the boundary where adsorbed CO and O 
are in touch. This is shown in Figure 2.12.

2.5 sTrucTure DePenDence

The final theme in this chapter is the surface structure dependence of the adsorp-
tion energy and reaction energies and activation barriers. It was illustrated in Figure  
1.1 that catalysts are often nanoparticles exposing several different facets to the gas 
phase. They also have other types of sites such as edges and corners. Figure 2.13 
shows a schematic of such a catalyst particle. Facets are usually denoted by their 
miller indices. The most common facets are the most close packed, which for the 
fcc crystal structure is the (111) and the slightly more open (100) surface structure. 

(2 × 2)

Figure 2.11 STm images of a Pd(111) surface with an ordered oxygen p(2 × 2) structure 
(structure with a unit cell that is twice as large as the metal surface unit cell in two directions). 
Oxygen atoms are imaged as bright bumps. Taken from méndez et al. (2005) with permission 
from The American Physical Society.

(2 × 1)

Figure 2.12 STm images of a Pd(111) surface with oxygen p(2 × 1) islands and CO-covered 
surfaces. Oxygen is imaged dark. Pattern formation of oxygen and CO islands can clearly 
be seen. Taken from méndez et al. (2005) with permission from The American Physical 
Society.
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In a reactive environment, the  reactants and products can induce other facets or 
completely new structures to become exposed. Undercoordinated sites at edges and 
corners are often particularly important for catalysis. The same kind of sites is 
found at steps on the surface. For the fcc structure, a (211) step is often used to 
model undercoordinated sites.

Corners

100

211

111
Steps/
edges

Facets

Figure 2.13 Schematic picture of a Pt particle consisting of 561 atoms. The particle is 
shaped so that it consists of (111) and (100) facets that are connected along edges that locally 
resemble the step sites on a (211) surface.

miller inDices

miller indices form a notation system in crystallography for directions and planes 
in crystal lattices. Lattice planes are determined by the three integers h, k, and 
l, also called miller indices. In a cubic lattice, these indices coincide with the 
inverse intercepts along the lattice vectors as shown in Figure 2.14. Thus, (hkl) 
simply denotes a plane that intercepts at the three lattice vectors at the points a/h, 
b/k, and c/l (or a multiple of those). If one of the indices is zero, the planes are 
parallel to that axis.

y = 1

a

(111) (211) (100)

b

c

x = 1

z = 1

y = 1

a
b

c

a
b

c

x = 2

z = 1

z = 0

y = 0

x = 1

Figure 2.14 Three examples showing the determination of miller indices. Left: (111) 
plane intercepting at 1 for x, y, and z. Center: (211) plane intercepting at ½ for x and y and 
1 for z. Right: (100) plane only intercepting at x = 1.
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The PED for elementary surface reactions generally depends strongly on the 
surface structure. We illustrate this in Figure  2.15 by comparing the PED for 
CO  dissociation on different Ni facets. Clearly, steps on the surface interact 
stronger with the final product, adsorbed C and O. The dissociation barrier is also 
 considerably lower. This means that not all sites on a metal nanoparticle will con-
tribute equally to the catalytic activity. Any process involving CO dissociation 
will, for instance, be strongly favored at defects and at the edges and corners of 
the particles.

When metallic nanoparticles become very small, there are additional effects 
due to the finite size of the particle. In the limit of particles consisting of just a few 
metal atoms, the catalyst is not a metal any more—rather, it is a molecule with 
properties that are quite different from metallic surfaces. The transition from 
metal to molecule appears to happen at rather small particles that are about 2 nm 
in diameter. This is illustrated in Figure 2.16 where the oxygen adsorption energies 
on the (111) and (211) facets of Pt nanoparticles are plotted as a function of their 
particle size. It can be seen that the oxygen binding energies approach those found 
for the (111) and (211) facets of infinite sizes for particles that are larger than 
2 nm in diameter.

For oxides and other nonmetallic catalysts, there could be considerably stronger 
effect of size. This is a problem that remains to be solved. We also note that there are 
additional structural effects due to the interaction between the active phase and the 
support—in some cases, they work together to form a new active phase at the 
boundary. We will return to this question in Chapter 9.
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Figure 2.15 Left: CO dissociation on different facets of fcc Ni. CO is first adsorbed 
molecularly and then dissociated into adsorbed carbon and oxygen. The barrier for dissocia-
tion is extremely structure sensitive being almost an eV higher over the (111) facet than over 
the more undercoordinated facets. Right: illustration of the fcc (111), (100), (211), and (321) 
facet structures. Adapted from Andersson et al. (2008). (See insert for color representation 
of the figure.)
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2.6 QuanTum anD Thermal correcTions To The  
grounD-sTaTe PoTenTial energy

We end this chapter by discussing a couple of relevant quantum and thermal correc-
tions to the potential energy.

A classical mechanical system at equilibrium is at rest in a (local) minimum on 
the PES and will have a potential energy given by the minimum value, Epot

min . A (real) 
quantum system will not, in general, be able to attain such an absolute potential 
energy minimum. This is due to the heisenberg uncertainty principle, which 
prescribes that the uncertainty in the position of a particle, Δx, is related to the uncer-
tainty in the momentum, Δp, of the particle:

 
∆ ∆x p⋅ ≥



2
 (2.5)

This prevents the particle from being perfectly at rest in a perfectly specified position. 
For a bound system, such as an adsorbate, small fluctuations around the local potential 
energy minimum are often accurately represented as harmonic vibrations. This allows 
us to make a simple correction to the potential energy minimum in order to obtain a 

signiFicance oF sTrucTural acTivaTion energy 
DiFFerences For DissociaTion reacTions

The activation energy differences of about 1 eV observed in Figure 2.15 are impor-
tant for two reasons. One reason is that a 1 eV barrier difference leads to large 
differences in the rates of the elementary reactions over the different facets. The 
other reason is that this observation is general. We shall in later chapters discuss 
further how such huge activation energy differences are present for many dissocia-
tion reactions of strongly bonded molecules and fragments over transition metals.

To make a rough quantitative estimate of the difference in catalytic activity 
between the close-packed and the undercoordinated sites of Ni for processes 
involving CO dissociation, we shall make a couple of assumptions. Let us assume 
that CO dissociation is the important rate-limiting step of the process, such that 
the catalytic rate is entirely determined by the rate constant for CO dissociation. 
This assumption may or may not be correct in general, but if the barriers become 
high enough, it will be a reasonable assumption. Now, let us further assume that 
the prefactors for the rates are approximately equal over the different surfaces. 
This is typically a quite reasonable first approximation. Finally, let us assume 
that coverages do not play a major role in determining the catalytic rates and 
that the process we are thinking of runs at 580 K where k

B
T = 0.05 eV. Then, we 

would expect the undercoordinated surfaces to be half a billion times faster at this 
catalytic reaction than the close-packed (111) surface. We shall in later chapters 
go to some length toward developing a more accurate quantitative treatment of the 
catalytic rates by relaxing the assumptions made earlier.



reasonable estimate of the ground-state energy of a quantum system. The quantized 
energy solutions, E

n
, of the harmonic oscillator quantum problem are given by

 
E E n hn i= + +






pot

min 1

2
ν  (2.6)

where Epot
min  is the local minimum in the potential, ν

i
 is the vibrational frequency, h is 

Planck’s constant, and n is a quantum number. The ground state, which is the lowest 
energy level, n = 0, thus has an energy given by

 
E E h i0

1

2
= +pot

min ν  (2.7)

The contributions from different vibrational modes are additive, such that if there are 
N

modes
 vibrational modes in the potential energy minimum, the total so-called ZPE 

correction is given by
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Figure 2.16 Adsorption energies of oxygen on platinum nanoparticles as a function of their 
diameter. Oxygen adsorption is shown for adsorption on the (211) edge (dots, top) and the (111) 
facet (dots, bottom). Oxygen adsorptions on the (211) (line, top) and (111) (line, bottom) facet 
of a particle with infinite diameter (metallic properties) are shown for comparison. Adsorption 
of oxygen on a platinum particle with a diameter of ~2 nm is shown schematically for the (111) 
facet and (211) bridge position. It can be seen that adsorption energies converge to metal values 
for particles that have diameters around 2 nm. Figure adapted from Li et al. (2013).
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Figure 2.17 shows how the ZPE for one vibrational mode depends linearly on the 
vibrational frequency of, for example, a molecule. Importantly, frequencies that are 
significantly smaller than 1000 cm−1 contribute only little to ZPE, while frequencies 
larger than 1000 cm−1 can contribute several tenths of eVs. We shall see later that 
this trend is completely opposite to that of the frequency contribution to the entropy 
(see Fig. 3.2). While most frequencies of adsorbed molecules are below 1000 cm−1, 
frequencies that involve bond stretching of strongly bound atoms usually end up in 
the region above 1000 cm−1 (the internal N

2
 stretching frequency is, for instance, 

2358 cm−1). The h
2
 frequency is as high as 4395 cm−1, and its contribution is there-

fore quite significant. As we will show here, the inclusion of ZPE contributions is 
especially important for hydrogenation reactions, such as ammonia synthesis. The 
reason lies in the multiple new atom–h stretching frequencies that are created in the 
hydrogenation of molecules and atoms (e.g., the three N–h stretching frequencies in 
Nh

3
). The new frequencies are often well above 1000 cm−1 and thus contribute signif-

icantly to the ZPE and usually more than make up for the loss in ZPE that occurs due 
to the breaking of the h–h (and N–N) bond. Table 2.1 shows the reaction ZPE cor-
rections for three simple hydrogenation reactions. The reaction energy for ammonia 
synthesis, for example, comes out as much as 0.83 eV too exothermic if one does not 
account for the ZPE corrections.
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Figure 2.17 ZPEi plotted as a function of vibrational frequency. Note that the correlation 
is linear and plotted on a double logarithmic scale.

Table 2.1 ZPe correction for selected hydrogenation reactions

Reaction ZPE correction (eV)

N
2
 + 3h

2
 → 2Nh

3
0.83

CO + 3h
2
 → Ch

4
 + h

2
O 0.80

CO + 2h
2
 → Ch

3
Oh 0.71



QUANTUm AND ThERmAL CORRECTIONS 23

Temperature is a measure of the average kinetic energy of the atoms in a system 
at thermal equilibrium. As the temperature increases, the kinetic energy will increase 
proportionally. This means that at nonzero temperatures the system will contain more 
energy than the (ZPE-corrected) potential energy, which is calculated at T = 0 K. 
Classically, we say that in order to “heat up” a system, we need to transfer energy to 
the system, such that the atoms move around and vibrate faster, thus increasing the 
kinetic and (often also) the potential energy of the atoms making up the system. The 
amount of energy that needs to be transferred per temperature increase at a given 
temperature in order to warm up the system is the heat capacity (at constant pressure), 
C

p
(T). The sum of the (ZPE-corrected) ground-state energy, E

0
, and the thermal 

energy of the system shall be referred to as the system’s internal energy, U(T). If we 
know how the heat capacity C

p
(T) varies with temperature, we can find the internal 

energy by integrating C
p
(T) up to the relevant temperature:

 
U T E C T dT

T

T

( ) = + ( )
=
∫0

0

p ´ ´  (2.9)

Typically C
p
(T ) is small enough such that the second term on the right side of 

Equation (2.9) is a small correction to the first.

QuanTum exPression For The inTernal energy

In a quantum formulation, the variation of the internal energy comes as a variation 
in which excited quantum states are thermally occupied at different temperatures. 
At T  = 0 K, only the ground state will be occupied. As the temperature increases, 
some of the other low-lying quantum states become occupied. Fundamental in the 
quantitative analysis of thermal properties is the Boltzmann distribution, which 
specifies that the relative probability of finding the system (which is in thermal 
contact with a heat reservoir) in two different quantum states is described entirely 
by the energy difference between the states and the system temperature through 
the relation:
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At nonzero temperature, the potential energy is therefore not E
0
, but a suitable 

average over many different quantum states, with a higher weight on low-energy 
states. The useful tool in analyzing a system in thermal contact with a heat reser-
voir (a canonical system) is the canonical partition function:
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The partition function gives a simple relation for determining the absolute proba-
bility for finding the system in a given quantum state, i:
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This is now a correctly normalized absolute probability because the relative prob-
abilities are conserved and the sum of probabilities for finding the system in any 
state is unity:
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This means that we can arrive at a quantum statistical mechanics definition of the 
internal energy as the thermally averaged energy of the various occupied states:
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Surface equilibria

3

As an important step toward understanding rates of chemical reactions on catalyst 
surfaces, we need first to understand equilibria involving atoms and molecules bound 
to a surface. In fact, an understanding of the stability of adsorbed intermediates in a 
surface-catalyzed reaction can in many cases give a good indication of whether the 
catalyst will work or not, even before analyzing the reaction barriers involved in the 
problem. In this chapter, we start by giving a brief review of the theory of chemical 
equilibria. We then extend those concepts to describe surface reactions.

3.1 chemical equilibria in GaSeS, SolidS, and SolutionS

The key thermodynamic concept for describing equilibria in chemical processes is 
the Gibbs free energy. The Gibbs free energy is defined as

 G H TS= − ,  (3.1)

where S is the entropy and H is the enthalpy, which is defined from the internal 
energy, U, as

 H U pV= − ,  (3.2)
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where p is the pressure and V is the volume. For a very short discussion on entropy, 
please see Appendices 3.2 and 3.3. The Gibbs free energy plays a role in chemistry 
much like the role played by the potential energy in classical mechanics. The poten-
tial energy describes a mechanical system’s potential for carrying out mechanical 
work, and the Gibbs free energy describes a closed chemical system’s potential for 
carrying out nonexpansion work. The maximum amount of work carried out by 
a mechanical system is only attained if all its motion is frictionless; likewise, the 
maximum amount of nonexpansive work carried out by a chemical system can only 
be attained if all reactions are reversible.

A mechanical system is stable when it is stationary in its lowest attainable poten-
tial energy configuration; a chemical system is in equilibrium when it is in its 
lowest attainable Gibbs free energy configuration. For a mechanical system, this 
equilibrium occurs where the derivative of the potential energy (or the negative 
force) is zero with respect to variations along all the system’s degrees of freedom. 
For a chemical system, it occurs when the variation of the Gibbs free energy (at 
constant temperature and total pressure) with respect to all variations in composi-
tion of the system is zero.

The practical utilization of the concept of Gibbs free energy is therefore that 
equilibrium of the system requires that any possible (element-conserving) chemical 
reaction that the system could undertake must satisfy the relation

 ∆G G G= − =final initial 0  (3.3)

where G
initial

 and G
final

 are the Gibbs free energies of a given set of atoms before and 
after, respectively, they undergo some chemical reaction.

Generally, S and U depend on the temperature and so does H. The Gibbs free 
energy, in contrast to what Equations (3.9) and (3.10) would seem to suggest at a first 
glance (see following text), ends up depending nonlinearly on the temperature. The 
entropy can be thought of as a measure of the number of accessible quantum states 
of a system (see Appendices 3.2 and 3.3), and the temperature dependence comes 
from extra quantum states becoming accessible as the temperature increases. 
(Classically, one would say that the increased kinetic energy of the atoms allows 
them to sample higher potential energy regions of the potential energy surface, 
whereas quantum mechanically one would say that higher energy levels become 
increasingly occupied). We saw that the temperature dependence of the internal 
energy can be taken into account by including an integral of the heat capacity over 
temperature, and a similar expression can be written for the entropy. We shall for the 
most part (for nonadsorbates) neglect the detailed temperature dependence, since it 
is typically easily retrieved from standard tables.

The entropy per atom or molecule of an ideal gas or a dilute solution is given by 
expressions such as

 
S p k pgas B( ) ln= −  (3.4)

 S C k Csolute B( ) ln= −  (3.5)
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The pressure ( p) and concentration (C ) dependence basically stems from the fact 
that the entropy is proportional to the logarithm of the number of accessible states, 
Ω, as

 S k= ⋅B lnΩ  (3.6)

Since the number of accessible quantum states of a randomly moving noninteracting 
entity (such as a molecule in a dilute gas or an ion in dilute solution) is proportional 
to the volume per particle, which basically is given by the number of thermally acces-
sible quantum states for a free particle in a box, the number of quantum states 
becomes inversely proportional to the pressure or concentration.

Reactions involving liquid or solid phases result in changes in volume at fixed 
density, as opposed to the changes in particle densities at fixed volume in the case of 
gases or ions in solution. This means that the Gibbs free energies of liquids and solids 
do not have terms varying with the logarithm of their particle densities (i.e., the free 
energies of solids and liquids do not have terms analogous to Equations 3.4 and 3.5).

The absolute Gibbs free energy incorporates a certain level of arbitrariness 
through the dependence of the internal energy on the ground-state potential energy. 
The commonly accepted standardized choice is to define a standard state for every 
substance at a set of standard conditions for every type of substance and a reference 
state for every element. The standard condition for a gas is chosen to be p° = 1 bar, 
and the standard condition for a solution is the standard concentration molarity of 
C° = 1 mol solute/kg solvent at the standard pressure of p° = 1 bar. The standard con-
ditions for liquids and solids are also the standard pressure of p° = 1 bar. (But since 
their free energy varies very little with pressure, this choice of standard is less 
important for the applications we shall discuss.) The standard state of a substance 
is chosen as its most stable thermodynamic state under standard conditions. The 
reference state for every element is then defined as its most stable pure standard 
state at standard conditions. With these choices, one can define the standard 
enthalpy of formation, H°, for each element as being zero for the element in its 
reference state, while for other substances H° is the reaction enthalpy for making 
the substance from the constituting elements in their reference state. Similarly, 
the standard entropy, S°, is then defined as the entropy of a given substance at stan-
dard conditions.

For historical reasons, G°, is also defined to be zero for the pure elements in their 
reference states. For other substances, G° is the reaction Gibbs energy for making the 
substances in their standard state from the constituting elements in their reference 
states. This is a point that one should be aware of, because its implication is that 
when using tabulated values, generally

 G H TS G H TS° ≠ ° − ° ≠ −and  (3.7)

The reason that the nonessential zero definition of the Gibbs energy has been made, 
even if it “messes up” one of the central expressions in physical chemistry, is that 
one typically always needs the Gibbs energies of reaction, not the absolute Gibbs 
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energies themselves. The following relation will therefore still hold for the Gibbs 
energies of reaction:

 ∆ ∆G H T S° = ° − °∆  (3.8)

The Δ’s here indicate a change in the given quantity as a reaction is undertaken. The 
definition of zero standard Gibbs energies for pure substances in their reference state 
makes it somewhat faster to look up reaction free energies in tables of thermody-
namic data, since one will not necessarily need to look up G° for pure substances.

For electrochemical reactions, the reactivity depends on variations in the 
electrostatic potential. The absolute potential is often defined as zero for an electrode 
over which H

2
 (gas) is in equilibrium with a 1 M acid solution. (Such a solution has 

a pH of 0, since pH is the negative of the logarithm of the concentration deviation of 
H+ ions from the standard concentration.) This definition of an electrochemical 
potential thus couples the standards of concentrations of solutions and pressures of 
gases with the definition of a potential in which equilibrium is established.

For a pure substance, X, we can write the following:
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G p G p p v( ) ( )( ) ( )s

X
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X= °+ − °  (3.12)

where the (p − p°)v term comes from the variation of the enthalpy as pressure varies 
from the standard pressure and v = V/N

X
 is the specific volume per N

X
 entity. The stan-

dard pressure (p°) and concentration (C°) are introduced in the logarithms, such that the 
logarithmic contributions are zero at the standard conditions. Since (p − p°)v < pv = k

B
T 

is a relatively small contribution, we shall typically ignore it and just write
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G p G( ) ( )( )s

X
s
X=  (3.16)

These expressions are “idealized.” Equations (3.13) and (3.14) assume that the atomic-
scale entities are weakly (or non-)interacting, while Equations (3.14) to (3.16) assume 
the solvent, liquid, and solid to be incompressible. Real gas molecules and ions, of 
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course, do interact and liquids are compressible and thus present variations from the 
formulas presented earlier. These variations are, however, typically rather limited and 
for the most part do not affect the discussion and conclusions in this text. We shall 
therefore throughout the text neglect deviations from ideal behavior.

We note that since we are considering the Gibbs free energy per atom, per molecule, 
or per reaction stoichiometry, this is by definition the chemical potential. We shall, how-
ever, generally refer to this quantity as the Gibbs free energy, in line with keeping the 
nomenclature for all other concepts, which we express in “per atomic-scale” entities.

We can use the expressions for the Gibbs energy (in conjunction with the require-
ment that reaction free energies are zero at equilibrium) to determine the equilibrium 
pressures and concentrations for given reactions. For a reaction A → B, the change in 
free energy is thus given by

 
∆ ∆ ∆G G k T

p

p

p

p
G k T

p

p
= ° +

°
−

°








 = ° +B

B A
B

B

A

ln ln ln  (3.17)

At equilibrium, ΔG = 0, and we thus obtain

 

p

p
e K

G

k TB

A Eq

eq

o

B= =
−∆

 (3.18)

where we have introduced the equilibrium constant, K
eq

, of the reaction. This expres-
sion for the activities (pressures and concentrations of a reaction) as a function of 
the standard Gibbs energy of reaction is called the law of mass action for the reac-
tion. In Appendix 3.1, we write up the general law of mass action for any reaction 
involving gases, solutes, liquids, and solids, based on the idealized Equations (3.25) 
to (3.28). This gives a general definition of the equilibrium constant for a reaction, as 
the unit-less quantity K e G k T

eq

o
B= −∆ / . We can use the generalized law of mass action 

to quickly write up equilibrium requirements. The equilibrium constant defined in 
this way is dimensionless because pressures and concentrations always occur (from 
Equations  3.13 and 3.14) in multiples of the standard pressure and the standard 
concentration. We may therefore just as well talk about pressures and concentrations 
in multiples of the standard pressure and concentration, thus dropping the p° and C° 
and thinking of pressures and concentrations as dimensionless quantities.

Consider as an example the ammonia synthesis reaction discussed in Chapter 2. 
The overall reaction is given by

 N H NH2 2 33 2+ →  (3.19)

This should have a law of mass action of the form
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Ammonia synthesis is an exothermic reaction with an experimentally observed 
ΔH° = − 0.95 eV. As we will discuss in more detail in Chapter 7, ammonia synthesis 
is industrially carried out at fairly high temperatures (~700 K) in order to attain rea-
sonably high turnover rates. Since we convert four gas-phase molecules into two and 
gas-phase molecules have a significant amount of entropy, this leads to a ΔS° of 
−2.05 meV/K. At 700 K, this gives ΔG° = 0.49  eV and therefore a relatively low-
equilibrium constant of K

eq
 ~ 0.0002. At these high temperatures, the equilibrium is 

thus shifted strongly back toward the reactants, N
2
 and H

2
. High pressures are there-

fore necessary in order to attain a reasonable conversion of reactants into products. 
This is shown in Figure  3.1 where the equilibrium concentration of ammonia is 
shown as a function of temperature and total pressure, assuming a stoichiometric 
N

2
:H

2
 ratio of 1:3. Note that if we were actually designing an industrial catalytic 

reactor, we would have to make a more accurate description of the free energetics, 
including a treatment of the nonideal properties of the gases, but assuming ideal 
behavior is sufficiently accurate for describing the qualitative features of the problem.

3.2 the adSorption entropy

In order to determine the change in free energy, ∆G, of an adsorption process, we 
need to know both the adsorption energy and the adsorption entropy. The previous 
chapter dealt with the adsorption energy. We now turn to the gas-phase and 
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fiGure 3.1 Equilibrium concentration of ammonia plotted as a function of temperature 
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ammonia, whereas high temperatures lead to a shift in equilibrium toward the reactants. 
Industrially, ammonia synthesis is performed at approximately 700 K and at a total pressure on 
the order of 100 bar. (See insert for color representation of the figure.)
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adsorption-phase entropy. The total entropy, S
tot

, of a molecule in the pure noninteracting 
gas-phase has four contributions:

 S S S S Stot trans rot vib el= + + +  (3.21)

that is, the translational, rotational, vibrational, and electronic contributions, 
corresponding to the different quantum states of these independent degrees of free-
dom. If it is a monatomic gas, there will of course be no rotational and vibrational 
contributions to the entropy as the gas molecules in a monatomic gas do not have 
these internal degrees of freedom. We shall now establish some useful rules of thumb 
for thinking about the magnitude of the entropy of gas-phase atoms and molecules 
and the entropy that is lost once an atom or a molecule adsorbs on a surface.

The standard entropy of small gas-phase molecules, such as N
2
 or CO, is of the 

order of 2 meV/K. Their entropic contribution to the Gibbs free energy at room tem-
perature (and at 1 bar) is therefore approximately −0.6 eV/molecule and increases 
with temperature to about −1 eV at 500 K. Most smaller molecules involved in het-
erogeneous catalysis have entropies of this order of magnitude; one important 
exception is H

2
 having a standard entropy of only 1.35 meV/K. Note that, for example, 

by using these approximate values, one will obtain ΔS° = − 2.05  meV/K for the 
ammonia synthesis reaction, which is precisely the experimentally observed value 
(see the preceding text). By far, the largest fraction of the standard entropic contribu-
tions arises from the translations, which result in an enormous number of (particle-
in-a-box type) energy states. The vibrational and rotational parts constitute a minor 
fraction of the gas-phase entropy. There are typically very few accessible electronic 
states, resulting in a very small electronic entropy contribution, and we shall gener-
ally ignore this contribution. The nonstandard contributions (the pressure dependence) 
to the gas-phase entropy come from the translational modes.

When a molecule adsorbs on the surface, it will lose a major part of its gas-phase 
entropy, as it loses the translational freedom from the gas phase. The translational 
and rotational degrees of freedom typically become constrained and turn into vibra-
tional modes (at least at low temperatures—at higher temperatures, they might 
become frustrated translational or frustrated rotational). The total contribution of a 
vibrational mode with frequency, ν

i
, to the standard Gibbs free energy is (except for 

the zero-point energy (ZPE) contributions that are discussed in Chapter 2 and 4)

 G k T e
i

ih

k T° = −
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ν

ν

B
Bln 1  (3.22)

We shall therefore typically think of S
i

°ν  as being

 S k e
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The full entropic term is actually more complex than this; there is an additional term, 
but this other term exactly cancels the temperature dependence (the vibrational C

p
 

term) of the enthalpy. As can be seen from Equation (3.23), S
i

°ν  depends on the 
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 frequency of vibration of the adsorbed molecule. Large frequencies will only give 
small values of S

i
°ν , while small frequencies lead to larger values of S

i
°ν . To give an 

estimate of the magnitude of S
i

°ν , we show in Figure 3.2 how G T
i

°ν ( ) for a single 
vibrational mode varies as a function of the frequency due to the vibrational entropy 
(ignoring the ZPE contribution). It can be seen that only frequencies that are around 
50 cm−1 or lower give significant contributions to G T

i
°ν ( ). Remembering that gas-phase 

molecules have an entropic contribution to the standard Gibbs energy of approxi-
mately −1 eV at 500 K, we can see that unless there are a number of very-low- frequency 
vibrational modes of the adsorbed molecule on the surface, it can be assumed as a 
rough approximation that the molecule loses all of its entropy upon adsorption:

 
∆S S S Sads ads gas-phase gas-phase

° ° ° °= − ≈ −  (3.24)

In addition to the contribution to the adsorption entropy from the vibrational (frus-
trated translational and rotational) degrees of freedom, there is an entropy contribu-
tion from the different configurations the adsorbate can have on the surface. Consider 
the adsorption of a gas-phase molecule onto a surface:

 
A Ag( ) * *+ →

The asterisk denotes a surface site where A can adsorb to form the adsorbed species, 
A*. The different ways in which N adsorbates can occupy N

0
  surface sites give rise 

to a configurational entropy contribution that depends on the coverage θ = N/N
0
:

 

S kads
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B
A= −
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 (3.25)
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For a derivation of this expression, see Appendices 3.2 and 3.3. It is seen that the 
coverage plays the role of an activity like the gas-phase pressure or concentration of 
species in solution. This expression makes it natural to choose the “standard” for 
coverage as the point where the coverage of the adsorbate in question is equal to the 
coverage of free sites. When only one species is present on the surface, the standard 
coverage thus corresponds to a surface that is half covered by the adsorbate. This 
looks a priori quite similar to the logarithmic contribution to the nonstandard term in 
the entropy of a gas or a solution. It is, however, different in the sense that the cov-
erage of free sites, θ

*
, is directly linked to the coverage of the adsorbate through the 

site balance equation (which states that the sum of fractional coverages is one).

3.3 adSorption equilibria: adSorption iSothermS

We will now examine how the equilibrium surface coverages depend on the adsorp-
tion strength of the adsorbing molecule and the influence of temperature and pressure. 
The equilibrium coverage is given by the requirement that the Gibbs free energy of 
adsorption is zero:

 
∆G G G= − =ads gas 0  (3.26)

This means that
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which gives us the corresponding law of mass balance:
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Remembering that since pressures typically enter in multiples of the standard 
pressure, p°, like here, we usually drop the p°, and let p

A
 describe a dimensionless 

pressure. We thus write

 θ θA A A= K p *  (3.30)

where the fractional coverage, the equilibrium constant, as well as the pressure are 
all dimensionless. We have here also implicitly used the convention that the number 
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of sites available on a surface is normalized to unity, such that the sum of all sites 
totals 1:

 θ θ* + =A 1  (3.31)

Substituting Equation (3.30) into Equation (3.31) gives

 
1 1+( ) =K pA A θ*  (3.32)

and hence

 
θ* = +

1

1 K pA A

 (3.33)

The coverage of A is thus

 
θA

A A

A A

=
+
K p

K p1
 (3.34)

This expression for the equilibrium coverage of an adsorbate as a function of the 
 gas-phase pressure and the standard reaction Gibbs free energy is called a Langmuir 
isotherm.

Figure 3.3 shows how θ
A
 changes with ∆H, that is, the adsorption strength of mol-

ecule A on a particular surface. We assume here an entropy loss of molecule A upon 
adsorption of −0.002 eV/K. It can be seen that the coverage of A on the surface 
depends strongly on its adsorption strength. Since the − TΔS° term in the Gibbs 
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fiGure 3.3 Coverage of species A plotted as a function of its adsorption strength, ∆H. 
Conditions are 300 K and 1 bar of A. The loss of entropy upon adsorption is −0.002 eV.
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energy is approximately 0.6 eV at 300 K, the equilibrium constant becomes on the 
order of 1 at ∆H = −0.6 eV, and at this adsorption strength, we find θ

A
 = 0.5. Note the 

strong dependence on ∆H as the surface sites shift from occupied to free following 
the Langmuir isotherm; there is a relatively narrow window of roughly 0.2 eV 
(at 300 K) within which θ

A
 shifts from essentially 1 to almost 0.

The coverage θ
A
 also depends strongly on the temperature of the system via the 

entropy term in the standard adsorption Gibbs energy in the equilibrium constant. 
A shift in temperature will lead to a strong change in the coverage of A. Using again 
the rule of thumb that most (smaller) gas-phase molecules have entropies on the 
order of 2 meV/K, Figure 3.4 shows the coverage of A, θ

A
, as a function of temper-

ature for an adsorption strength, ∆H, of −1 eV. An increase in temperature leads to 
an increase in −T∆S and will hence decrease the adsorption equilibrium constant 
and the coverage of A. The strong dependence on the temperature becomes clear as 
the coverage changes from 0 to 1 due to a change in the temperature of less than 
200 K.

Lastly, since θ
A
 also depends on the pressure p

A
, we will show how pressure influ-

ences θ
A
. Figure 3.5 shows the coverage of A plotted as a function of the pressure of 

A for three different adsorption strengths. When ∆H is very negative, θ
A
 will be large 

even at low pressures of A. At less negative values of ∆H (where binding to the sur-
face is less favorable), one can significantly increase the θ

A
 with an increase in 

pressure. The pressure dependence is, however, less pronounced than the dependence 
of θ

A
 on ∆H and T.

In most catalytic processes, two or more molecules react with each other. The cov-
erages of these different surface species depend on each other, since the adsorbates 
compete for the same adsorption sites. We will show this dependence for an example 
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fiGure 3.4 Coverage of species A plotted as a function of temperature for an adsorbate 
with adsorption strength, ∆H, of −1 eV, a gas-phase pressure of 1 bar, and a standard adsorp-
tion entropy of −2 meV/K.
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where we have species A and B adsorbing on the surface. As shown in Equation 
(3.30), the coverages of species A and, similarly, species B can be written as 

 θ θA A A= K p *  (3.35)

 θ θB B B= K p *  (3.36)

If we constrain the number of free sites to one (as we shall typically always do), 
we get

 θ θ θ* + + =A B 1  (3.37)

This gives

 
θ* = + +

1

1 K p K pA A B B

 (3.38)

and hence

 
θA

A A

A A B B

=
+ +

K p

K p K p1
 (3.39)

 
θB

B B

A A B B

=
+ +

K p

K p K p1
 (3.40)
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fiGure 3.5 Coverage of species A plotted as a function of pressure at three different values 
of adsorption enthalpy, ∆H. The temperature is 300 K and the standard adsorption entropy is 
−2 meV. (See insert for color representation of the figure.)
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Differences in adsorption energies of even as little as 0.1 eV lead to a total dominance 
of the stronger adsorbing species on the surface. This is observed in Figure 3.6 where 
the coverages of A and B are plotted as a function of their difference in adsorption 
strength ∆∆H

AB
 = ∆H

A
 − ∆H

B
 for an adsorption enthalpy of species A of ∆H

A
 = −1 eV. 

At ∆∆H
AB

 = 0, both species have a surface coverage close to 0.5. Already when A 
binds only 0.1 eV stronger than B, the coverage of A totally dominates the surface 
(at this temperature). There is thus only a narrow range of adsorption energy differ-
ences in which the two species are coadsorbed on the surface in appreciable amounts. 
As soon as one species binds about 0.1 eV stronger than all other species, it will 
totally dominate the surface coverage at room temperature (and if it binds just 0.2 eV 
stronger than all other species, it will totally dominate the surface coverage at 2 times 
the room temperature ~600 K).
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fiGure 3.6 Coverages of species A and species B plotted as a function of their difference 
in ∆H, ∆∆H

AB
. ∆∆H

AB
 is defined as ∆H

A
 − ∆H

B
, where ∆H

A
 is kept at a constant value of −1 eV. 

The temperature is kept at 300 K and the pressures of A and B are 1 bar. The standard entropy 
of adsorption is assumed to be −2 meV.

co poiSoninG of a pem fuel cell

Pt is used as a catalyst in fuel cell reactors where it catalyzes the oxidation of H
2
 

to protons (Gasteiger et al., 1994). One of the factors determining the activity of 
the catalyst is the surface area available to catalyze this process (i.e., the number 
of sites where H

2
 can adsorb). The main source of H

2
 is currently natural gas, 

from which H
2
 is produced via steam reforming and water–gas shift. This pro-

cess usually results in H
2
 gas that is contaminated with small amounts of CO. 

Since CO binds strongly to the Pt surface, CO poisoning is an important issue for 
hydrogen fuel cell catalysts. This is an example of competitive adsorption—CO 
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versus H
2
. We can estimate the severity of CO poisoning on Pt(111) using data 

from the CatApp (see Chapter 2). We get a CO adsorption energy of −1.2 eV 
and a dissociative H

2
 adsorption energy of −0.7 eV on the Pt(111) surface. We 

showed earlier that a difference in adsorption energies of 0.1 eV leads to a total 
dominance of one species. We will now try to estimate how low of a CO pressure 
is needed in order to avoid poisoning the surface. H

2
 adsorbs dissociatively on 

the Pt surface:

 H H2 2 2+ →* *  (3.41)

The configurational entropy of adsorbed H is therefore

 

S kH
conf

B
H= −









ln

*

θ
θ

2

2
 (3.42)

This gives the following expressions for the coverages of H and CO:

 

θH

H H

H H CO CO

=
+ +

K p

K p K p
2

2
1

 (3.43)

 

θCO
CO CO

H H CO CO

=
+ +

K p

K p K p1
2

 (3.44)

Figure 3.7 shows how even ppm amounts of CO severely reduce the H coverage 
on the surface and hence the ability of Pt to act as a hydrogen oxidation catalyst. 
This explains the observed CO poisoning.
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fiGure 3.7 Left: CO poisoning of a PEM fuel cell. Adapted from Oetjen et al. (1996). 
Right: competitive adsorption between CO and H

2
 on the Pt(111) surface as function of CO 

pressure. Conditions are 300 K and 1 bar of H
2
.
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3.4 free enerGy diaGramS for Surface 
chemical reactionS

In Chapter 2, it was shown how to construct potential energy diagrams (PEDs) from 
adsorption and reaction energies. These energies can, for example, be obtained from 
the CatApp (see Fig. 2.4), and Figure 2.5 shows the PED of ammonia synthesis on 
the stepped Ru(0001) surface. Ammonia synthesis (Equation 3.19) is an exothermic 
reaction where the standard entropy of the products is lower than that of the reactants 
(4 gas-phase molecules are converted to 2). We already showed in Figure 3.2 that 
high pressures are needed to shift the equilibrium to favor ammonia over nitrogen 
and hydrogen at higher temperatures. While PEDs are good tools to obtain a simple 
overview of the elementary reaction steps in a process, they often fail to give insight 
into reactions that involve large shifts in entropy (such as ammonia synthesis) at a 
level sufficient to make even qualitative predictions about relative reaction rates. We 
shall therefore introduce the Gibbs free energy diagram. These diagrams take the 
effects of temperature and pressure into account by showing the “configurationally 
corrected Gibbs free energy levels,” cc

�G∆ , of every reaction step, A, with respect to 
the reactants:

 
∆ ∆G H T S SA

cc
A A R= − °−( )  (3.45)

where cc
�G∆  is understood to be the full Gibbs reaction energy from the reactants but 

in which the entropy of all adsorbates are calculated in their “standard states” given 
by θ

i
 = θ

*
.

The Gibbs free energy diagram for ammonia synthesis is shown in Figure 3.8. The 
diagram was derived from the energies shown in Figure 2.6, with the values being 
ZPE corrected. The gas-phase entropy is included, while entropy contributions of 
adsorbed species are assumed to be zero.

Figure 3.8 shows the free energy diagram for ammonia synthesis at different tem-
peratures. The effect of temperature is rather strong for ammonia synthesis where 4 
molecules are converted into 2. Ammonia synthesis is exothermic, but high temper-
atures act against that by increasing the T∆S term. While ammonia synthesis is still 
exergonic at 300 K, it becomes about neutral at 500 K and is uphill by almost 0.5 eV 
at 700 K. Since we neglect entropic contributions from adsorbed species, the effect of 
temperature can only be seen in adsorption and desorption processes.

Figure 3.8 shows why high temperature is needed for the ammonia synthesis to 
proceed rapidly. At 300 K, the adsorbed N-containing species are so stable with 
respect to NH

3
 in the gas phase that the surface will be completely covered as soon 

as a small amount of ammonia is formed. This means that there is no place for N
2
 to 

dissociate and the rate is extremely low. Only at temperatures around 700 K does the 
“thermodynamic sink” associated with adsorbed NH

x
 disappear. At this high tem-

perature, however, the reaction is uphill in free energy (endergonic). In order to 
push the equilibrium toward some ammonia conversion, the pressures of N

2
 and H

2
 

need to be high (see also Figure 3.1). We will discuss the influence of pressure in 
the following.
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If the pressure term is included for varying pressures as described in Equation (3.17), 
a quantitative picture of the pressure dependence of the different reaction steps is 
achieved. Figure 3.9 shows the free energy diagram of ammonia synthesis at 700 K 
and 10% conversion toward ammonia. At ambient pressures (1 bar total pressure), 
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fiGure 3.8 Gibbs free energy diagram for ammonia synthesis on the stepped Ru(0001) 
surface at 300, 500, and 700 K. The numbers correspond to the six different reaction steps: (1) 
N

2
 + 2* → 2N*; (2) H

2
 + 2* → 2H*; (3) N* + H* → NH* + *; (4) NH* + H* → NH

2
* + *; (5) 

NH
2
* + H* → NH

3
* + *; (6) NH

3
* → NH

3
 + * (see also Fig.  2.6). Data was obtained from 

CatApp and corrected for ZPE and entropy contributions. The entropy of adsorbed species was 
assumed to be zero. A pressure of 1 bar was assumed for all species involved.
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fiGure 3.9 Gibbs free energy diagram for ammonia synthesis on the stepped Ru(0001) 
surface at 1, 10, and 100 bar. The numbers correspond to the six different reaction steps (see also 
Figs. 2.6 and 3.9) as defined in the preceding text. Data was obtained from the CatApp and 
corrected for ZPE and entropy contributions. The entropy of adsorbed species was assumed to 
be zero. Reaction conditions are as follows: T = 700 K, N

2
:H

2
 = 1:3, conversion to ammonia = 10%.
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the reaction is endergonic by about 0.3 eV (note that here the total pressure of all 
reactants and products is 1 bar, whereas neglect of the pressure term assumes 1 bar 
for each of the gas-phase molecules involved). A 10% conversion cannot be there-
fore achieved at 700 K and 1 bar; the reaction would simply run backward until 
equilibrium is obtained. (The threshold for conversion as a function of temperature 
and pressure is also shown in Fig. 3.2.) A pressure of 10 bar increases the adsorp-
tion of gas-phase species and leads to an approximately thermoneutral Gibbs 
energy of reaction. The conversion can be further improved when going to even 
higher pressures (here shown for 100 bar) where the reaction is now downhill in 
free energy.

appendix 3.1 the law of maSS action  
and the equilibrium conStant

Suppose we have a very general reaction involving a number (Ng
R) of gaseous 

reactants (Xi
R) with stoichiometric coefficients, κg

R

i
. The reaction also involves a 

number (Naq
R ) of solvated reactants (Aj

R) with stoichiometric coefficients, κaq
R

j
. The 

reaction furthermore involves similarly defined liquid Lk
R( )  and solvent Sh

R( ) 
reactants, with appropriate stoichiometric coefficients. These react to form a 
number (Ng

P) of gaseous products (Xi
P) with stoichiometric coefficients, κg

P

i
; a 

number (Naq
P ) of solvated products ( Aj

P) with stoichiometric coefficients, κaq
P

j
; and 

so on. The products can also react in the backward direction (as all elementary 
reactions can):
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Equilibrium for this reaction occurs when the Gibbs energy of reaction is zero. We 
thus calculate the Gibbs energy of reaction (per stoichiometric reaction)
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and reduce out the standard contributions in the term ΔG° using the expressions for 
ideal gases, solutions, liquids, and solids in Equations (3.25) to (3.28):
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In equilibrium, we thus have
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Exponentiation of both sides of this equation results in an expression that is called 
the law of mass action (due to the assumptions made earlier that it is not really a law, 
but rather a rule of thumb, which holds well for ideal gases, ideal solutions, and 
incompressible solutions, liquids, and solids):
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The value of the law of mass action is that it gives us a tool for determining equilibrium 
pressures and concentrations for a reaction for which we can calculate the standard 
free energy of reaction. Since the activities of the solids and liquids do not appear 
in the expression, one always has to check if so much of any of these has reacted 
that it is not present as a liquid or a solid state any longer. If this is the case, then the 
reaction described by ΔG° has run to completion, and the equilibrium has not been 
established. The dimensionless quantity, e G k T− °( )∆ / B , is a constant that the right-hand-
side function of pressures and concentrations in the law of mass action (A.3.1.5) 
should satisfy at equilibrium, and we shall therefore call it the equilibrium constant 
for the reaction

 K e
G

k T
eq

B=
−

°∆

 (A.3.1.6)
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appendix 3.2 countinG the number of adSorbate 
confiGurationS

The number of ways one can distribute N
A
 adsorbates on a clean surface with N

S
 

surface sites can be calculated in the following way. For the first adsorbate, there are 
N

S
 available free sites to choose between; for the second adsorbate, there are (N

S
 − 1) 

sites remaining to choose between; and so on. This process continues until the N
A
th 

adsorbate, for which there are (N
S
 − N

A
 + 1) free sites left to choose between. The 

number of ways to place the N
A
 adsorbates is then product of the individual 

possibilities:

 

N N N N N
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S A
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1 2 1
!

!
 (A.3.2.1)

However, the N
A
 adsorbates we have placed on the surface are indistinguishable. This 

means that if we exchange an adsorbate that was put in site “X” with an adsorbate 
that was put in site “Y,” then the resulting configuration would be indistinguishable 
from the original state. Therefore, Equation (A.3.2.1) overcounts the number of 
physically distinguishable distributions by a factor equal to the number of ways we 
can order the N

A
 adsorbates (in the N

A
 chosen sites on the surface). The number of 

such ways can be described as the number of ways we can pick an adsorbate for site 
one, multiplied by the number of ways we can pick one for site two, etc., until all N

A
 

adsorbates have been placed in their sites. For the first pick, there are N
A
 adsorbates 

to choose between; for the second choice, there are (N
A
 − 1) to choose between; etc. 

So in total, there are N
A
 ! ways to order the adsorbates, and the total number of con-

figurations, N
conf

, is therefore given by
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 (A.3.2.2)

This expression is often referred to as a binomial coefficient since it is the same as 
the coefficient in front of the xNA th term in the polynomial expansion of the binomial 
( )1+ x NS.

appendix 3.3 confiGurational entropy of adSorbateS

The entropy stemming from a number of different possible states with the same 
energy is S = k

B
 ln Ω, where Ω is the number of distinguishable microscopic states. 

This is the Boltzmann formula for the entropy of a closed system. (This is a particular 
case of the more general Gibbs equation for entropy defined for open (as well as 
closed) systems: S = − k

B
 ∑ 

i
 p

i
 ln p

i
, where p

i
 is the probability of finding the system in 

the microscopic state i.) The total configurational entropy of a system of N
A
 adsor-

bates distributed in N
S
 random sites on a surface is therefore
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Entropy generally is expressed as a product of two factors: one that is proportional to 
the system size and another that is independent of the system size. To obtain a more 
generally useful expression than Equation (A.3.3.1), we employ an approximation to 
the factorial expression (retaining only terms of at least order n):

Stirling’s approximation (to order n)—ln n ! ≈ n ⋅ ln n − n
By which, it is obtained that
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Now, using that θ
A
 = N

A
/N

S
 and θ

*
 = (N

S
 − N

A
)/N

S
, we get the expression
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This expresses the total entropy for a system with N
S
 surface sites. Throughout the 

book, we take an “atomic-scale point of view,” so we typically think of the thermo-
dynamic quantities on a per atom, per molecule, or per reaction basis. We thus obtain 
the differential configurational adsorption entropy (the configurational entropy 
gained by the system through the adsorption of one extra adsorbate) as a function of 
coverage, by differentiating the total system entropy per surface site with respect to 
the coverage:
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The configurational entropy gained upon adsorption thus goes to infinity when the 
coverage goes to zero (and goes to negative infinity as the coverage goes to 1). This 
is the fundamental reason why it is essentially impossible to make a totally clean or 
totally covered surface.
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Rate Constants

4

As discussed in the previous chapters, much can be learned about the catalytic 
 properties of a surface from analyzing potential energy diagrams and free energy 
diagrams for the process intermediates reacting over the surface. As we saw in 
Chapter 3, the free energy calculations/diagrams let us determine the equilibria for 
elementary and nonelementary reactions. Through knowledge of the adsorption free 
energies and the dependence of the configurational adsorption entropy on coverages, 
they also let us determine the coverages of various species on the surface under 
equilibrium conditions.

Equilibrium considerations can certainly be useful, but catalysis is in the end 
really all about speeding up a reaction, where the reactants and products are not in 
equilibrium, so we must be able to address reaction rates to obtain a detailed picture 
of what goes on at catalytic surfaces under relevant conditions. We did not specify 
exactly how to get to the elementary rates from knowledge of the Gibbs free energy 
diagrams, but have so far only postulated an Arrhenius-type expression for rate 
constants in terms of (an as-of-yet undetermined) prefactor and an activation energy 
that we could obtain already from the potential energy surface (PES). We have also not 
yet addressed how to determine coverages of adsorbates when there are reactions 
occurring at the surface out of equilibrium. In order to determine the out-of-equilibrium 
coverages during a catalytic reaction, we will need to quantitatively model the 
kinetics, and this is the topic of Chapter  5. In order to quantitatively model the 
kinetics in Chapter 5, we will need to specify rate constants for elementary reactions. 
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This chapter, which will at times become rather technically involved and perhaps 
appear only remotely connected to catalysis, aims to specify exactly what is meant 
by the term “rate constant” and how it relates to the Gibbs free energy surface. The 
reason we have included it anyhow in a book on the “fundamental concepts in 
 catalysis” is that it strengthens the foundation under the free energy diagrams as a 
central concept and tool for analyzing catalytic reactions on surfaces. It will also be 
putting the concepts of activation energy, activation entropy, and transition state (TS) 
zero-point energy corrections on a firmer foundation. Since this chapter may be sig-
nificantly more useful for the reader who has the ambition of simulating catalytic 
reaction rates than to other readers, some might want to just accept the central result 
of the chapter and move on to Chapter 5. The central result we shall discuss is that 
the rate constant for an elementary reaction is given by

 
k

k T

h
e G k T= − °B TS B∆ /  (4.1)

where ΔG
TS

° = ΔE
TS

° − T  ΔS
TS

° = E
a
 − T  ΔS

TS
°   is the standard Gibbs free energy 

in a so-called TS minus the standard Gibbs free energy in the reactant state. This 

implies that we have a practical way to calculate the prefactor, ν = °k T

h
e S kB TS B∆ / , in the 

Arrhenius expression (Equation 2.1).

4.1 the timesCale PRoblem in simulating RaRe events

Having established a PES, one can (at least in principle) calculate reaction rates 
directly, by numerically integrating the dynamics of the atoms for “long enough” 
periods of time to obtain reliable statistics on the reaction rate. It turns out, however, 
that this is rarely a practical approach. Classical molecular dynamics integration 
entails starting the system with a kinetic energy corresponding to the temperature of 
the system, in a reasonable position or structure located in a region of the PES, which 
we would classify as the “reactant region.” Then we would develop the position of 
the system according to newtonian mechanics, by calculating the force on the system 
(as the negative derivative of the PES). We simultaneously need to ensure that 
statistical fluctuations representing random thermal fluctuations (stemming from the 
system’s thermal contact with a heat reservoir) enter in a reasonable way. The rate 
could then in principle be measured as the inverse time until the system reaches the 
region of the PES, which we would identify as belonging to the “product region” of 
the elementary reaction. Perhaps we would need to redo this a number of times in 
order to obtain reasonable statistics. The main problem with this direct dynamics 
integration approach for catalysis applications is that the important catalytic reactions 
are those that are slow, since these reactions limit the overall catalytic rate. In order 
to reliably integrate newton’s 2nd law, one needs to take time steps of a size that 
is  on the order of inverse molecular vibration frequencies. As we shall see in 
this chapter, this corresponds to taking on the order of 1013 time steps in the  molecular 
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dynamics integration for modeling a typical catalytic rate of 1 s−1. This is perhaps 6 
orders of magnitude more time steps than what is typically affordable on a modern 
computer and requires very detailed information of the PES, which is typically costly 
to obtain.

Fortunately, a number of methods exist to treat the problem of modeling rare 
events, and reaction rates can often be obtained without carrying out full molecular 
dynamics simulations. Most reaction rate theories for elementary processes build 
upon the ideas introduced in transition state theory (TST). This theory establishes 
how to get from knowledge of the PES to simple estimates of the rate, how the 
activation energy and prefactor in the Arrhenius expression come about, and what its 
building blocks are. We shall follow the simplest path to deriving TST, by starting 
from a classical point of view and then substituting in the correct quantum statistical 
mechanics elements when necessary. The reason for performing such a slightly 
messy two-step derivation is twofold. First of all, it is significantly more transparent 
than a thorough quantum statistical mechanical treatment, and secondly, the true 
quantum contributions to the rate (quantum tunneling) end up being extremely 
involved to treat and are typically important only for lower-temperature reactions 
than those relevant for catalytic applications. Having obtained TST, we shall 
also  discuss how to go beyond TST to calculate exact “classical” rates, as well as how 
to make the so-called harmonic approximation to TST (harmonic transition state 
theory (HTST)), which in many cases is adequately reliable for treating elementary 
processes at surfaces.

4.2 tRansition state theoRy

TST approaches the problem of calculating a reaction rate for a rarely occurring reac-
tive event by separating the PES into two regions, one being the reactant region (R) 
and the other being the product region (P). The reactant region defines the general 
region in which the system can be found before reacting, and the product region 
defines what is thought of as a product of the elementary reaction in question. The 
border between the two regions, a so-called separatrix, is the TS. We shall assume 
that we can divide up the whole configuration space of the system such that any con-
figuration belongs to either the reactant region, the product region, or the TS. The 
lowest energy configurations in the reactant and product regions are often referred to 
as the initial state (IS) and final state (FS), respectively. The lowest energy point in 
the TS is often also itself confusingly referred to as “the TS,” especially if this is a 
first-order saddle point (a stationary point with one mode of negative curvature) on 
the PES; in which case, it is often used for making a harmonic approximation to TST, 
as we shall discuss. We shall here restrict the term TS to refer to the separatrix bet-
ween the reactant and product regions. If entropy effects were to be neglected, the 
natural choice would be to let the TS follow the energy ridge between the reactant 
and product regions (as drawn in Fig. 4.1).

It may look easier than it typically is to determine a “good” TS on the PES. Since 
the TS has zero thickness along the reaction path, it is an object of dimensionality one 
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lower than the full dimensionality of the PES. In Figure 4.1, for example, the TS is the 
dashed red line of dimensionality 1 on a PES of dimensionality 2. For a system of N

atoms
 

atoms, the dimensionality of the PES is 3N
atoms

, since each atom has 3 spatial degrees 
of freedom (in the absence of any constraints). Already for systems with even a 
relatively limited number of atoms, the TS can then be an object of significant dimen-
sionality embedded in the higher dimensional space in which the PES is defined. 
Additional complexity can arise from the PES being very rugged (e.g., the many local 
metastable configurations of a liquid will correspond to local minima on the PES 
 representing the liquid). We shall also see in the following that a “good” choice of TS 
might need to take entropy into account (thus really defining a free energy surface 
instead of the original PES). These complexities are often less relevant to the most 
important (the slow) catalytic processes, which typically happen on relatively smooth 
PESs and have high energy barriers compared with many other types of atomic-scale 
processes. We shall therefore not go into any detail with such additional complexities.

The division of the PES into regions in Figure 4.1 is quite intuitive, and if the con-
figuration of the atomistic system were entirely defined by the position of the atoms 
in space, this would be a perfectly useful definition of the reactant region, the TS, and 
the product region. It turns out, however, that the structure of a system does not 
entirely define its “physical state.” We can think of this in terms of the question: What 
information do we need about the state of a system now in order to predict its config-
uration at a later point of time? If we think of this question in terms of newton’s 2nd 
law, which relates the rate of change in momenta, p, to the gradient of the potential

 

d

dt
V

p
x= −∇ ( )  (4.2)

then we realize that at a given point of time, we need not only all positions of all the 
atoms, x, but also all of their momenta, p, (or equivalently their velocities), in order to 
calculate the configuration at a later time. For a full specification of the physical state 

Initial state R

Final state P

D-1 dimensional dividing surface, TS

FiguRe 4.1 Separation of the configuration space used in transition state theory into three 
regions: the reactant region, the product region, and the transition state, which is a dividing 
surface that separates the reactant and product regions.
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of the system, we therefore need to specify the configuration in a 6N
atoms

-dimensional 
space made up of combined positions and momenta. We can thus think of Figure 4.1 
as defining a division of configurations of combined positions and momenta into 
a reactant region and product region, the TS separating the two. The derivation of 
the TST rate constant in the following shall take advantage of an assumption of a 
 thermally equilibrated reactant to separate the configuration space and the momentum 
space. The first assumption of TST is therefore that the energy of the reactant state is 
Boltzmann distributed. This is typically satisfied if the system has had enough time 
to thermally equilibrate in the reactant region. If the reactant region is unbounded, as 
could be the case with a gas-phase reactant, we assume that the reactant is impingent 
on the TS as a thermally equilibrated gas. This assumption would be fulfilled by a gas 
in thermal equilibrium, but is certainly not fulfilled by a molecular beam impingent 
on a surface, such as that discussed in Figure 2.3. Care therefore has to be taken when 
comparing such experiments directly to rate data or simulations.

The PES defines a unique correspondence between a potential and the nuclear posi-
tions of the system. When developing a rate theory based on the existence of a PES, we 
are therefore implicitly invoking the Born–oppenheimer approximation. This approx-
imation assumes that motion of the electrons is instantaneous compared with the 
motion of the nuclei, such that for whatever motion, we shall never move on an elec-
tronically excited state not corresponding to the ground-state potential energy. This 
is often a reasonable assumption, because the mass of any nucleus is on the order of 
2 × 103–5 × 105 heavier than an electron. Since the forces exchanged between the nuclei 
and electrons are of similar size, the electrons can be assumed to be in their ground state 
in the electrostatic potential set up by the environment (typically the nuclei).

We shall in addition assume that the rate of quantum tunneling through the poten-
tial barriers is negligible compared with the rate obtained from the classical treatment. 
This is an assumption that generally always breaks down when the temperature 
becomes low enough. However, the typical crossover temperature below which the 
rate becomes dominated by quantum tunneling is very low (dependent on the barrier 
thickness and the masses of the tunneling particles).

Besides the three assumptions made earlier, one more central assumption is made 
in TST. The last assumption is that once the system attains a configuration in the TS 
with a velocity toward the product region, it will necessarily “react” and become the 
product. This sounds perhaps like an assumption that would necessarily always be 
fulfilled, but it is not. For such a configuration to lead to a reactive event, the system 
should not reenter the reactant region again shortly after moving into the product 
region. For some processes, many such “recrossings” occur, even with the best pos-
sible choice of TS. It is thus a significant approximation that one has to be aware of, 
since it leads to overestimations of the rate. This assumption, however, also leads to 
some very nice (variational) properties of TST, which can effectively be utilized for 
determining an appropriate separatrix as TS and to include corrections to beyond 
TST, as we shall discuss later in the chapter.

Finally, we define the “rate constant” for an elementary process as the rate of the 
process under the assumption that the system starts out by being in the reactant 
region. The rate constant is thus equal to the reaction rate, if the system is in the reac-
tant configuration. This concept will be used to derive microkinetics in Chapter 5.
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We are now ready to formulate TST. TST is the theory that, under the assumptions 
made earlier, decomposes the rate constant, k

TST
, for an elementary process into the 

product of the probability of being in the TS, P
TS

, and the rate,  r
c
, of passing through 

the TS in the direction toward the product region:

 k P rTST TS c=  (4.3)

The rate for traversing the TS is of course infinite if the TS is infinitely thin (of one 
dimension less than the full configuration space) and the system is in the TS with a 
velocity of the system not parallel to the TS. Likewise, the probability for the system 
to be found in the TS relative to being found in the reactant region will be zero if the 
TS is infinitely thin. We therefore assume that the TS region has a small finite thick-
ness,  δx, and we determine the rate constant in the limit that the thickness of the TS 
goes to zero (Fig. 4.2). now, the energy as a function of positions, x, and velocities, v, 
is (classically)

 
E E Ex v, pot kin( ) = +

 

 
E V m v

i
i ix v x,( ) = ( ) +∑ 1

2
2  (4.4)

Using the assumption that the system is thermally equilibrated and therefore has 
Boltzmann-distributed energies, the probability density for finding the system at the 
point (x, v) in combined configuration and momentum space will be
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 (4.6)

 P P Px v x vx v,( ) ∝ ( ) ⋅ ( )  (4.7)

Since the potential and kinetic energies are additive (the potential is velocity 
independent), the probability density for finding the system at a point (x, v) becomes 

R

P

Thickness δx

v⊥

FiguRe 4.2 Definition of the vicinal region of the transition state and the perpendicular 
forward velocity. Here “R” designates the reactant region and “P” the product region.
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separable into a product of two probability densities, one of which only depends on 
position and the other only depending on velocity. The kinetic energy is therefore not 
only Boltzmann distributed for the total system (meaning averaged over an entire 
PES) but also Boltzmann distributed in every single point, x, on the PES.

The rate at which the system traverses the infinitesimal region of thickness, δx, 
around the TS is given by the average velocity orthogonal to the configuration space 
TS (see Fig. 4.2):

 
r

v

xxc,δ δ
= ⊥  (4.8)

The average orthogonal velocity can be evaluated directly from the Boltzmann 
distribution:
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v

k T
⊥ = B

2πµ
 (4.11)

The variable, μ, introduced at this point is an effective mass of the system for the 
motion perpendicular to the configuration space TS.

The classical result of TST is then the definition of the TST rate constant, which 
is obtained by combining the Equations (4.3), (4.8), and (4.11):
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We could now attempt to “classically” determine the probability of finding the system in 
the infinitesimal vicinity of thickness, ± δx / 2, around the TS surface as an expression like
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where the denominator normalizes the probability, such that P x
TS±

δ
2

 is the  absolute 

probability for finding the system in the ± δx/2 vicinity of the TS region. This, however, 
will not give the correct (quantum statistical mechanics) probability.
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Equation (4.12) is therefore as far as we can get in the description of TST from a 
purely classical point of view. To derive the TST rate constant on a form that is useful 
for determining chemical rates, we now simply assume that the classically obtained 
lessons earlier also hold in a quantum setting. Specifically, we shall assume that with 
the same assumptions underlying the theory as the aforementioned, we can still talk 
about a “TS,” which from a quantum mechanical viewpoint by no means is obvious. 
Secondly, we shall assume that we can still speak of a “rate of traversing the config-
uration space TS” and that it is given by the same expression as we derived classi-
cally. This assumption is not clearly evident either, even if a TS can be defined, since 
an equilibrium quantum system at nonzero temperature actually cannot really be said 
to have “a velocity,” but should rather be described in terms of a thermally averaged 
superposition of stationary quantum states. The argument for this loose derivation is 
that it saves us considerable complexity as compared to an attempt on a fully quantum 
statistical mechanical exposition, and it actually gives the correct result. We shall 
thus proceed by assuming that the only necessary modification of the aforemen-
tioned classical derivation is to insert the correct probability of finding the system in 
the vicinity of the configuration space TS P x

TS±
δ
2

. In quantum statistical mechanics, 

the equivalent of the classical probability density of finding the system in a given point 
is the probability of finding the system in a given state or set of states, and this 
 probability is described by relative partition functions. We shall thus assume that we 
can write the probability of being in the δx vicinity of the configuration space TS 
compared to the reactant region, as a fraction of the partition functions:
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That one can just ascribe energy levels to belong to a certain configuration space 
region is certainly not obvious, but we shall not argue further for this abstraction, 
except mentioning that the total number of states for a real system is incredibly large.

We need to take the limit as δx → 0, and we shall therefore integrate out the degree of 

freedom in q
TS±

δ
2  perpendicular to the TS. This is the motion along the reaction path, 

which is an unbound mode. If δx is taken to be sufficiently small, the wave function for 
such a free motion (in a constant potential) can be described as a plane wave. The number 
of such quantum states in this degree of freedom can then be determined as box-quantized 
plane waves (particle-in-a-box solutions), which have the quantized energy spectrum
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where μ is the effective mass for motion perpendicular to the TS. now, the δx-partition 
function can be evaluated explicitly, giving
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If we assume the energy levels lie close compared to k
B
T, we can rewrite the sum as 

an integral and evaluate this:
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We can therefore write the probability of finding the system in the ± δ/2 vicinity of 
the TS as
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This gives us the TST rate constant as the product of the rate at which the TS is 
 traversed multiplied by the probability of the system to be found in the TS:
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which reduces to
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The partition function, qTS, is now the partition function for being “in” the TS and not 
just in the ± δ/2 vicinity of the TS, thus now excluding the mode perpendicular to the TS.

The relative partition function expression, qTS/qR, is as mentioned earlier an 
expression for the relative probability of finding the system in the TS compared to 
finding it in the reactant state. Since one of the fundamental assumptions underlying 
the TST is that the distribution of states in the reactant region and the TS is thermally 
equilibrated, it is reasonable to set the relative partition functions equal to an 
equilibrium constant, which is defined through the differences in standard Gibbs 
energy between the TS and the reactant state:
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The TST result is therefore often written on the form
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or equivalently
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where ΔG°, ΔS°, and ΔH° are differences in standard Gibbs energy, entropy, and 
enthalpy between the TS and the reactant state, respectively. one should be careful when 
evaluating the standard entropy contribution in the TS to explicitly avoid including the 
entropy contribution from the translational motion along the reaction path (or more 
 generally perpendicularly to the TS). The expressions in Equations (4.22) and (4.23) are 
often convenient for applications, since they allow for the straightforward inclusion of 
tabulated entropies and the extension of TST to open systems (e.g., gaseous reactants). 
often, the change in entropy between the reactant and TS is relatively limited. This 
is particularly true for systems where there are no changes in unbound translational 
degrees of freedom, since free translations lead to by far the largest entropy contributions 
(as, e.g., the large entropy of gases). At catalytically relevant temperatures, k

B
T/h is of 

the order of 1013 s−1. In the absence of large entropic effects, the prefactor should there-
fore be approximately 1013 s−1. That experimental studies sometimes show significant 
variations in prefactors from 1013 s−1 can then be due to a number of different issues. 
Primarily, either the entropic contributions actually vary substantially between the reac-
tant and the TS, or the differences from the 1013 s−1 “rule-of-thumb” result occur because 
the observation of something that is not an elementary rate is fitted to the Arrhenius 
expression corresponding to an elementary step. When a total rate is measured for a 
process that is actually a combination of several competing elementary steps, significant 
variations are observed in the experimentally observed activation barriers and prefactors 
as compared with the same quantities for the corresponding elementary steps.

In order to get a rough idea of what Equation (4.22) means, we will now show how 
the rate varies as a function of temperature for different values of the Gibbs free 
energy of activation, ∆G (see Fig. 4.3). As typical values, we choose 0.75, 1.5, and 
2.25 eV, representing small, medium, and large barriers for heterogeneously cata-
lyzed reactions, respectively. As we will show in Chapter 5, as a rule of thumb, a 
reasonable catalyst should have a reaction rate on the order of 1 site−1 s−1. Although 
some catalysts also operate at rates as low as 10−2 site−1 s−1, some others show high 
rates on the order of 100 site−1 s−1. The catalytic activity thus depends both on the rate 
at which a reactant is turned into a product at an active site and the number of active 
sites available on the catalyst. We shall therefore focus here on the regime giving 
rates around 1 s−1. As can be seen in Figure 4.3, barriers of 0.75 eV lead to rates of 
about 1 s−1 at room temperature. Moderate free energy barriers of 1.5 eV require tem-
peratures of about 600 K in order to reach 1 s−1, while large barriers require high 
reaction temperatures significantly over 800 K. The increase in rate with temperature 
is very steep in the beginning but flattens out at higher temperature. If we take 500 K, 
which is the region of many catalytic processes, one can deduce from Figure 4.3 that 
we can increase the rate by approximately 7.5 orders of magnitude when lowering 
the barrier from 1.5 to 0.75 eV. A change of 0.1 eV in barrier hence roughly leads to 
an order of magnitude change in rate.
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Figure 4.4 shows a Gibbs free energy of activation, ∆G, plotted as a function of 
temperature for r = 0.01, r = 1, and r = 100 s−1. If we take a rate of 0.01 s−1 as the 
limit (normally 1 s−1 is desirable), one can see the maximum allowed free energy 
barrier for a given temperature. For example, roughly 500 K is needed to yield a 
rate of 0.01 s−1 when the barrier is about 1.5 eV. It can also be seen that the rate 
increases substantially with increasing temperature, the increase being more 
 pronounced at higher temperatures. The figure also explains why most heteroge-
neously catalyzed reactions proceed at temperatures between 400 and 600 K as 
these temperatures are needed in order to get reasonable reaction rates when 
 barriers are somewhere between 1 and 1.5 eV.

Figure 4.5 shows the Gibbs free energy of activation, ∆G, as a function of rate for 
three different temperatures. Here, we can read of the rate that a certain barrier will 
give us for a certain temperature. At ∆G = 0, r is only dependent on the prefactor that 
is roughly 1013 s−1. Processes having very small barriers below 0.5 eV, which is often 
seen in surface diffusion (see also Chapter 2), are exceedingly fast even at room tem-
perature and are hence usually equilibrated. We can also see that by increasing the 
temperature from 300 to 600 K (for ∆G = 0.75 eV), we get an increase in rate from 
1 to 107 s−1. Likewise, this increase in temperature would allow the barrier to increase 
from 0.75 to 1.5 eV while preserving a rate of 1 s−1. Figures 4.3, 4.4 and 4.5 thus 
allow us to obtain some rules of thumb on how the reaction rate is connected to the 
barrier and temperature.

For the study of trends in catalysis, one often looks at a given reaction and reac-
tion pathway and varies the catalytic surface. Here, the variations in entropy from 
system to system are usually very small and give rise to variations in the rate by less 
than an order of magnitude. This should be compared to the changes in rates induced 
by varying the energy barriers of different reactions. A change in barrier of, for 
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FiguRe 4.3 Rate plotted as a function of temperature for a Gibbs free energy of activation 
of ∆G = 0.75 eV (black curve), ∆G = 1.5 eV (light gray curve), and ∆G = 2.25 eV (dark gray 
curve) as  calculated using Equation (4.22).
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example, 1 eV will at room temperature, for example, lead to a variation in the 
Boltzmann factor of approximately 1017. Since the variation in activation barriers 
between neighboring metals in the periodic table is on the order of perhaps half an 
eV, it is often sufficient for the study of trends in heterogeneous catalysis to disregard 
effects of the varying prefactor and concentrate entirely on the variations in the 
 reaction energetics.
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FiguRe 4.5 The Gibbs free energy of activation, ∆G, shown as a function of r for T = 900 K 
(black curve), T = 600 K (light gray curve), and T = 300 K (dark gray curve) as calculated 
using Equation (4.22).
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FiguRe 4.4 The Gibbs free energy of activation, ∆G, plotted as a function of temperature 
for r = 0.01 s−1 (black curve), r = 1 s−1 (light gray curve), and r = 100 s−1 (dark gray curve) as 
calculated using Equation (4.22).
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4.3 ReCRossings and vaRiational tRansition state theoRy

We have not yet addressed how to determine a reasonable TS from knowledge of the 
PES. The so-called variational transition state theory (VTST) approach is the key 
tool for providing insight into how to make an optimal choice of TS.

It is assumed in TST that configurations that are found in the TS and have a 
velocity toward the product region will eventually end up in the product region. This 
means that cases where the supposed product crosses back into the reactant region 
are miscounted as “false positives” (see Fig. 4.6).

Since some trajectories that are counted as reactive events end up turning back to 
the reactant region, these lead to an overestimation of the TST rate constant as “false-
positive” counts. other reaction trajectories will cross the TS once, turn back to the 
reactant region, and finally cross the TS region again to end up in the product state, 
thus actually being reactive events. These trajectories also lead to an overestimation 
of the rate, since the single reactive event they represent leads to a double counting 
of the forward crossings of the TS. In fact it is observed that no matter how many 
times a trajectory crosses the TS before it turns into either products or reactants, the 
TST rate constant will be overestimated, since it assumes that every crossing of the 
TS toward the product region is one reactive event.

The overestimation of the TST rate constant associated with these recrossings 
may at first sound like a terrible nuisance, leading to a significant inaccuracy of the 
theory. However, the concept that the TST rate constant is always overestimated 
leads to a useful method for determining a “good TS,” as it establishes a “variational 
principle” for the optimal dividing surface. A variational principle is a principle 
stemming from knowledge of some quantity always being strictly overestimated (or 
strictly underestimated). A variational method is then the derived method that  utilizes 
the fact that since some quantity is always strictly overestimated (or strictly under-
estimated), one can try many different variations of suggested optimal solutions, and 

One recrossing

I

I F

F

Two recrossings

FiguRe 4.6 Two different kinds of recrossings that both lead to an overestimation of the 
rate constant.
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the suggestion leading to the smallest value of the overestimated quantity (or largest 
value of the underestimated quantity) is then optimal in the tested space of trial 
solutions.

In general, we can here write

 k kTST exact≥  (4.24)

with equality holding only in the special case that a “trial” TS is a dividing 
 surface with no recrossings at all. The variational method now stipulates that we 
should choose the TS such that k

TST
 is as small as possible. Such a TS is by defini-

tion the “optimal” TS to be used for a TST evaluation of the rate. By picking this 
optimal TS, we would obviously be overestimating the exact rate constant as little 
as  possible. Unfortunately, however, there are very considerable difficulties in 
carrying out all possible variations of the dividing surface to find the absolutely 
optimal one. As we saw earlier in the chapter, the TS in configuration space could 
be a (3N

atoms
 − 1)-dimensional object, and even for relatively simple reactions 

with a few atoms, the TS can be almost impossible to even just represent—let alone 
carrying out—all possible variations. Extending rate theories for rare events to 
systems of many atoms is thus an active research area, and we point the reader 
to the Further Reading section at the end of the chapter. For many heterogeneous 
catalysis applications, one can find very reasonable TS, with a limited number of 
recrossings. This probably stems from the fact that the large barriers relevant for 
the slowest catalytic rates also often lead to significant trapping of the reactant 
as it traverses the TS.

A significant and straightforward improvement can be obtained over TST by 
including so-called dynamical corrections to the TST rate constant. This is practi-
cally done by first choosing a TS (perhaps variationally) and then evaluating by 
molecular dynamics the trajectories of a Boltzmann ensemble of starting points in 
the TS surface. These trajectories are followed for a very short time period compared 
to the time constant (inverse rate) of the reactive event, however, long enough to give 
a reasonable estimate of how many times they cross the TS before being thermally 
equilibrated in either of the reactant or product regions. The inclusion of such dynam-
ical corrections to TST can for many processes essentially give the exact classical 
rate, as long as the assumptions mentioned in the beginning of the chapter are 
satisfied. This leads us to introducing the transmission coefficient, κ(T), which is 
always smaller than one and which accounts for the recrossing corrections and 
 therefore expresses the exact classical rate:

 k T kexact TST= ( ) ⋅κ  (4.25)

 
k T

k T

h
e G k T

exact
B TS B= ( ) ⋅ ⋅ − °κ ∆ /  (4.26)

 κ T( ) < 1  (4.27)
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If one, for example, measures a TS entropy by fitting an expression such as

 
k

k T

h
e G k T= ⋅ − °B TS B∆ /  (4.28)

to a measured rate constant, k, one should always remember that in fact the unknown 
transmission factor has been introduced into the experimentally measured entropy:

 
κ κ

T
k T

h
e

k T

h
e eG k T S k T k H k( ) ⋅ ⋅ = ⋅ ⋅− ° °+ ( )( ) − °B BTS B TS B B TS B∆ ∆ ∆/ ln / / TT  (4.29)

one can take another point of view and say that since the term k
B
 ln  κ(T) for all 

intents and purposes behaves like a (perhaps slightly temperature-dependent) 
reduction of the standard entropy (since ln  κ(T) < 0), then we should consider it a 
genuine reduction of the entropy in the TS. We shall utilize this convention throughout 
the book, such that we consider Equation (4.28) an exact relation for the exact rate 
constant, k, and the exact standard Gibbs energy barrier, ΔG

TS
°, which then again 

entails that we redefine the TS entropy as

 S S k TTS TS B° = ′ ° + ( )ln κ  (4.30)

where ′ °STS  is the classical (Gibbs grand canonical ensemble) entropy in the TS 
that is proportional to the logarithm of the number of accessible states and the term 
k

B
 ln  κ(T), is a “recrossing correction” to the standard TS entropy.
Since the dynamical corrections involve molecular dynamics, or at least some 

sort of thermal sampling of a reasonably sized ensemble, these corrections can 
easily become rather computationally demanding to carry out. often, it has been 
found fruitful to go in the opposite direction instead and use TST as a conceptual 
basis for making simpler estimates of the rate constants and base these on approx-
imations to the true TS. one such approach, which has become extremely popular, 
is the HTST.

4.4 haRmoniC tRansition state theoRy

In HTST, a harmonic expansion of the PES is invoked both in the IS and in the saddle 
point separating the IS and the FS. The HTST is therefore applicable under the same 
general assumptions as mentioned for TST but further demands that the PES is 
smooth enough for a local harmonic expansion of the PES to be reasonable. This 
means that it is necessary that the potential is reasonably well represented by its 
second-order Taylor expansion around these two expansion configurations. The gen-
eral idea is that the partition functions in Equation (4.20) can be evaluated analytically 
for the harmonic expansion of the PES around the expansion points. This leads to 
very simple expressions for the rate constants and gives reasonable rate constants for 
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those systems for which the underlying assumptions are not violated. Adsorbates 
reacting with each other on surfaces have in a number of cases been shown to have rate 
constants that are surprisingly well represented by this relatively crude approximation 
to full TST.

The procedure for determining the HTST rate constant thus follows a series of 
well-defined steps. These are steps allowing the determination of a rate constant 
based on an extremely limited sampling of the PES. First, an IS is determined as 
the lowest energy point in the reactant region, for example, by direct structural 
optimization. Then, a dominant first-order saddle point on the PES needs to be 
determined. A number of practical methods exist for performing such saddle point 
searches. For the extended systems (surfaces) relevant for heterogeneous catalysis, 
one is usually limited to saddle point search methods, which only employ forces 
(first derivatives of the potential) and energies. A majority of studies in theoretical 
catalysis focus on predefined elementary reactions, for which the IS and FS are 
assumed to be known, and the objective of the search method is to find the saddle 
point between these states. For problems of this type, the nudged elastic band 
(nEB) method or one of the many derived methods is typically used. The nEB 
algorithm establishes a string of “images” of the system that lie approximately 
optimally along the minimal energy path (MEP) from the IS to the FS of the reac-
tion. To use the nEB algorithm, one needs to a priori determine the FS as well as 
the IS. The saddle point is determined as the maximum energy configuration along the 
MEP. The TS in HTST is then the uniquely defined dividing surface, which is the 
hyperplane (a plane without curvature or so to say with a constant normal vector 
everywhere) going through the saddle point and which is perpendicular to the reac-
tion path at the saddle point.

The next step is to perform a normal mode analysis, which is a method for finding 
the uncoupled orthogonal vibrational modes of the system. Expressed in coordinates, 
q

i,IS
, from the IS along these D orthogonal modes, a harmonic expansion of the poten-

tial in the reactant region can then be established as

 
V V k q

i

D
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2 , ,  (4.31)

The potential in the TS hyperplane is similarly
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The force constants, k
i
, are also obtained from the normal mode analysis and used to 

obtain the vibrational frequencies, υ
i
, for the different modes with υ

π
µi i ik= ⋅

1

2
/  

for the vibrational eigenmode i corresponding to an effective mass in the vibrational 
direction of μ

i
. The partition functions for the potential expansions in Equations (4.31) 

and (4.32) can then be evaluated analytically and introduced in the expression for the 
rate constant in Equation (4.20). In the harmonic approximation, we can then write 
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up the probability of finding the system in the TS, qTS/qR, by summing over all the 
 vibrational levels and all vibrational modes. Since the energy levels of the harmonic 
oscillator mode with frequency υ

i
 are given by

 
ε νn ih n n= +






 =1

2
0 1 2, , , ,  (4.33)

we get a partition function for the harmonic mode i to be
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We utilize that geometric series can be reduced to closed expressions by observing 
that

 n

nz z z z z
=

∞

∑ = + + + + +
0

2 3 41   (4.35)

and
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such that when we subtract these two series, we get the result of “1”:
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We therefore have
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which implies that

 n

nz z
=

∞
−∑ = −( )

0

1
1  (4.39)

Setting z e
h

k T
i

=
−

ν

B  in Equation (4.34), we then obtain
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The D vibrational modes in the IS give a reactant region partition function on the form
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This separates into a product of individual vibration mode partition functions:

 

q e e e e
V

k T

n

k T

n

k T

n

n n

D

R

Harmonic

IS

B B B= ⋅ ⋅ ⋅
−

=

∞ −

=

∞ −

=

∞

∑ ∑ ∑
1

1

2

2

0 0 0

ε ε


−−
εnD

k TB  (4.42)

such that the total reactant region partition function becomes
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We shall conveniently rewrite this as
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Similarly, the TS partition function is given by the (D − 1) frequencies in the saddle 
point as
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We can now use Equation (4.20) with the harmonic partition functions
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to determine the HTST rate constant: 
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where the product ratio represents the thermal contributions to the entropy (and 
the internal energy corrections to the activation energy), and we have defined 
the  zero-point-energy-corrected activation energy as



HARMonIC TRAnSITIon STATE THEoRY 65

 

∆E V h V hjj

D

ii

D

a SP
SP

IS
IS/ /= +( ) − +( )=

−

=∑ ∑ν ν2 2
1

1

1
 (4.48)

If the frequencies are small, such that hυ
i
 ≪ k

B
T for all i, we can make the Taylor 

expansion
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of the exponentials in the product ratio (to first order):
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The HTST rate constant is then approximately (assuming that hυ
i
 ≪ k

B
T for all i)
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The HTST rate constant in this case therefore reduces to an Arrhenius expression:

 k e E k T
Arrhenius

a B= ⋅ −υ ∆ /  (4.52)

Since in Equation (4.51) there is one frequency more in the numerator than in the 
denominator, the prefactor, υ, is often practically thought of as a frequency of an 
atomic vibration and is therefore also referred to as an “attempt frequency.” 
Typically, however, for slow surface reactions of relevance in heterogeneous 
catalysis, not all frequencies will be small, and the assumption hυ

i
 ≪ k

B
T is there-

fore very poorly  satisfied. The simplified expression in Equation (4.51) will then 
lead to unacceptably large errors. We shall therefore generally discourage the use 
of Equation (4.51) and rather rely on the “exact” HTST rate constant expression 
in Equation (4.47), remembering that the activation energy should be zero-point 
energy corrected, which in the presence of large frequencies can lead to significant 
corrections (see Chapter 3).

Many adsorbate and bulk systems fulfill the assumptions for HTST to apply. For 
strongly bonded systems, the PES is often sufficiently harmonic in the IS and in the 
saddle point. This is perhaps due to the rather large energy barriers involved in most 
surface processes. Almost always, the most important processes are very slow com-
pared to molecular vibrations. This can be seen as natural, since strong bonds lead to 
attempt frequencies around 1013 s−1. If the energy barrier is not substantial, the rate 
automatically becomes extremely high, and the reactant and product would then turn 
out to establish thermal equilibrium.
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FiguRe 4.7 Difference between HTST and multiconfiguration Hartree approach. Adapted 
from van Harrevelt et al. (2005).

For thin enough barriers and at low enough temperatures, the transmission 
coefficient will get quantum tunneling corrections and can actually grow to become 
(much) larger than one, even in presence of recrossings. This is due to quantum 
tunneling through the reaction barrier. The crossover temperature at which the 
reaction rate is no longer dominated by the classical rate expressions derived 
 earlier, but by thermally activated quantum tunneling, is typically significantly 
lower than room temperature. Since lighter atoms tunnel more readily, hydrogen is 
one of the few atoms, which can tunnel at reasonably high temperatures (e.g., at 
room temperature), dependent on the barrier thickness. A fully satisfactory 
 (variational) quantum TST has still not been devised. This is primarily because the 
reasonably complete description of quantum tunneling requires solution of the full 
Schrödinger equation.

Figure 4.7 shows results from an HTST calculation of the rate constant for n
2
 

 dissociation over a ruthenium surface as compared to results obtained using the much 
more advanced and significantly more computationally demanding “multiconfigura-
tion Hartree approach,” which explicitly takes quantum tunneling effects into account. 
It is observed that the two lines representing HTST and the multiconfiguration Hartree 
approach are essentially indistinguishable down to low temperatures (1/T = 0.005 K−1 
corresponds to T =200 K). The result illustrates that for this reaction not only are the 
thermal quantum tunneling corrections to the TST rate constant small but it is also 
that the harmonic approximation to TST performs extraordinarily well for this process.

Some important systems, which certainly do not fulfill the assumptions of 
HTST, are liquid-phase reactions. For these, many different reaction paths are 
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 typically  present, and the PESs in vicinity of the first-order saddle points are not 
 adequately well represented by a harmonic expansion (the first-order saddle points 
are not well separated from the second-order saddle points on the scale of k

B
T). 

This problem is difficult to correct for. other important systems, to which HTST 
does not directly apply in the form derived earlier, are those where the reactant is a 
gas-phase molecule. In the gas phase, there are zero modes such as translation and 
rotation, and these lead to totally different partition functions than those obtained 
from a normal mode analysis. one extends HTST to this type of reaction simply by 
inserting the gas-phase partition function into Equation (4.20) instead of the 
harmonic expansion or by inserting tabulated entropies associated with translation 
and  rotation instead of the vibrations into Equation (4.23). one can thereby in a 
simple manner still use the results of HTST to obtain the relevant rate constant.
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Kinetics

5

In the previous chapters, we have dealt with the methodology for describing equilibria 
of chemical reactions as well as the methodology for obtaining rate constants for 
elementary reactions. In order to describe the total reaction rate of a set of coupled 
reactions (and a heterogeneously catalytic reaction is always a coupling of several 
elementary reaction steps), we shall now combine these descriptions to arrive at a 
logical treatment of coupled elementary steps. This description is referred to as 
“microkinetic modeling.”

5.1 MicroKinetic Modeling

We saw in Chapter 3 how it was relatively simple to obtain an expression for the con-
figurational entropy for a given coverage of an adsorbate from a combinatorial 
argument for randomly distributed adsorbates. In reality, adsorbates of course do 
interact as we also witnessed in Chapter 3. Adsorbates on an ordered surface will 
during their motion on the surface attempt to minimize their free energy. If the 
thermal fluctuations are small enough compared with the corrugation of the potential 
energy surface, but large enough that the adsorbates can slowly diffuse around, then 
adsorbate structuring on the surface will occur. The adsorbates can then form periodic 
structures (to minimize their mutual repulsion), islands (to maximize their mutual 
attraction), undergo phase separations, or form various other types of short-range 
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or  long-range ordering. This complexity is often difficult to treat exactly, and the 
 solution of such problems with many interacting bodies is a key research area of 
statistical mechanics. In statistical mechanics, an often-utilized first approximation 
to a solution is the so-called mean field model.

In a mean field model, one replaces all the detailed interactions between any one body 
and the rest of the system with an average or “effective” interaction. This replacement 
turns a many-body problem into a set of one-body problems. The same approach is used 
to model catalytic reactions on surfaces. In catalysis, the term “mean field microkinetic 
modeling,” however, commonly refers to the specific microkinetic model in which all 
repulsive (or attractive) interactions between adsorbates have been removed. This 
strategy has (perhaps surprisingly) in a large number of studies turned out to give remark-
ably good agreement with experimental studies. Significant care has to be taken, how-
ever, since adsorbate interactions can be quite significant, as we saw in Chapter 2.

5.2 MicroKinetics of eleMentary surface Processes

Let’s assume we have determined a rate constant, k
−
, for the desorption of species A 

from a surface. Recall that the rate constant is the rate for the desorption process, 
assuming that the adsorbate (A) is in the reactant (i.e., adsorbed) state. The rate at 
which desorption occurs from a given site on the surface is then proportional to the 
product of the rate constant and the probability that a given site is occupied. The 
probability that a site is occupied is equal to the fractional coverage of the adsorbate 
on the surface, θ

A
. So we arrive at the expression

 
r kdesorption A= ⋅− θ  (5.1)

Likewise, we would expect r
adsorption

 to be proportional to the probability that a site is 
unoccupied, θ

*
. We saw in Chapter 3 that at equilibrium this process is described by 

the equation

 θ θA ads A= ⋅K p *  (5.2)

When adsorption and desorption are equilibrated, the rates for adsorption and 
 desorption are equal in magnitude:

 
r radsorption desorption=  (5.3)

So, at equilibrium, we must have

 
r k K p k padsorption ads A A= ⋅ = ⋅− +θ θ* * (5.4)

We can see that the following relation must hold:

 
K

k

kads =
+

−

 (5.5)
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We can think of the Equation (5.4) as expressing the adsorption rate as the product of 
2 terms: (i) the rate constant k

+
 at a flux of A toward the surface corresponding to 

standard pressure (1 bar), p
A
, which describes the flux variation due to variations in 

the pressure relative to the standard pressure, and (ii) the coverage of free sites, θ
*
, 

which is the probability that the site we are trying to adsorb in is a free site. Since this 
point of view makes sense even when the system is not in equilibrium, we shall 
assume Equation (5.4) holds for nonequilibrium situations.

The expression (5.5), which states that the equilibrium constant for an elementary 
reaction (here adsorption/desorption) is equal to the forward divided by the backward 
rate constant, is actually very general. We observe that
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where the last equality only holds if the forward and the backward G
TS
° terms cancel 

each other. At equilibrium, they do, meaning that the forward and the backward 
reactions go through the exact same transition state. This is a manifestation of the 
principle of microscopic reversibility. This principle (originally due to Ludwig 
Boltzmann and derived for gas-phase collisions) is a result of the time-reversal sym-
metry of the underlying mechanical laws governing the dynamics of the system 
(whether we take those laws to be Newton’s 2nd, the time-dependent Schrödinger 
equation, or the Dirac equation, they all manifest time-reversal symmetry). This 
leads to what is called the principle of detailed balance—the concept that for a set 
of multiple coupled elementary reactions at equilibrium, the forward rate of each 
elementary reaction will be identical to the backward rate of the same elementary 
reaction. Since Equation (5.5) thus is a manifestation of a deeper-lying principle, one 
way to view the “derivation” of Equation (5.5) is that we have chosen rate expres-
sions for adsorption and desorption that conform to our earlier calculation of the 
configurational entropy of adsorption in Appendix 3.3.

The rate expressions for surface processes thus take the same form as well-known 
expressions for chemical reactions in gas phase or in solution. Whereas the activities of 
gas- or liquid-phase reactants are expressed as pressures or concentrations, the activities 
of surface reactants are expressed in terms of the fractional coverages of adsorbates and 
of free sites. For surface processes, we can define reaction fractions by taking the prod-
uct of the activities of the left-hand side of a reaction equation and dividing it by the 
right-hand side. For example, with the adsorption–desorption reaction given by

 A A+* *�  (5.6)

we can associate the reaction fraction, θ
A
/p

A
θ

*
, and at equilibrium, we have
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As we shall see, it is convenient to define the “approach to equilibrium” (also 
 sometimes called the “reversibility”) for an elementary step or for an overall reaction 
as the rate of the backward reaction divided by the rate of the forward reaction. 
We  see that this can also be thought of as the reaction fraction divided by the 
equilibrium constant. For the adsorption reaction, the approach to equilibrium is

 
γ

θ
θads
A

A
ads= −

p
K

*

1  (5.8)

The approach to equilibrium is thus a positive quantity, which satisfies the  following 
statements:

 γ < 1: .The net reaction is in the forward direction  (5.9)

 γ = 1: .The reaction is in equilibrium  (5.10)

 γ > 1: .The net reaction is in the backward direction  (5.11)

The point of view taken earlier suggests a straightforward extension to other 
elementary reactions of importance in describing catalytic surface processes. If we 
look at dissociative chemisorption (as an elementary reaction)

 A A2 2 2+ →* *  (5.12)

we would expect

 
r k pdiss diss A= ⋅ ⋅

2

2θ*  (5.13)

And for the reverse process of associative desorption,

 2 22A A* *→ +  (5.14)

will have a rate expression given by

 r kass ass A= ⋅θ 2  (5.15)

In these expressions, the squared coverage, θ*
2  (or θA

2), can be thought of as describing 
the probability of finding two empty sites (or two sites both with an atom A) next to 
each other (assuming that the free sites or adsorbates are randomly distributed on the 
surface) as a prerequisite for the reaction to occur.

For a surface diffusion process of an adsorbate, A, from one site to a neighboring 
site, we would expect it could be described by an elementary process step such as

 A A* * * *+ → +  (5.16)

and that it would have a rate expression given by
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 r kdif dif A= ⋅ ⋅θ θ*  (5.17)

The coverages in this expression now represent the product of probabilities of finding 
an adsorbate A in the site we are looking at and an unoccupied site next to it. For a 
surface-mediated coupling/scission reaction

 A B AB* * * *+ ↔ +  (5.18)

we obtain the rate expressions

 
r kcoupling coupling A B= ⋅ ⋅θ θ  (5.19)

 r kscission scission AB= ⋅ ⋅θ θ*  (5.20)

For the very similar disproportionation reaction

 AB C A BC* * * *+ ↔ +  (5.21)

we obtain the forward rate expression

 
r kdisprop disprop AB C= ⋅ ⋅θ θ  (5.22)

For all the aforementioned two-site processes (dissociation, association, diffusion, cou-
pling, scission, and disproportionation), one should remember that on a two-dimensional 
surface (or along a one-dimensional step), there is rarely only one neighboring site to 
react with. The probability of finding, for example, an empty neighboring site is there-
fore proportional to the coverage of empty sites. If an adsorbate in one site has, for 
example, six neighbors with whom it can react along similar reaction paths, then a 
factor of 6 should be included in the rate constant.

This can be thought of within the framework of transition state theory (TST) 
(Chapter 4) as the configuration integral in the transition state running over the whole 
surface separating the reactant region from the six distinct product regions. Whereas 
the factor corresponding to the number of neighbors is therefore intrinsically taken 
into account in the general formulation of TST, it is not automatically taken into 
account in harmonic transition state theory (HTST), in which a harmonic expansion 
of the transition state configuration integral is carried out in only one first-order 
saddle point on the potential energy surface. Using HTST in combination with 
microkinetics, one should therefore in principle always remember to include the 
number of equivalent paths, N

equivalent paths
, as an extra factor in the appropriate rate 

constants. In terms of full TST, this corresponds to an increase in the entropy of the 
transition state by k

B
T ⋅ ln(N

equivalent paths
). Since this is on the order of a couple of k

B
Ts 

and therefore significantly smaller than typical errors in the energetics, the correction 
is often not taken into account in actual applications. As the quantitative analysis of 
catalytic reactions becomes increasingly more accurate and in closer correspondence 
with experiments, one may, however, eventually wish to include such corrections.
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aPParent activation energy of an eleMentary 
reaction steP

An often employed method for analyzing experimentally obtained reaction rates 
is to derive the so-called apparent activation energy. One assumes an Arrhenius 
expression (r A e E k T= ⋅ − A B/ ) where the prefactor, A, and activation energy,  E

A
, are 

temperature independent. After a little algebra, one arrives at the expression

 
E

r

k TA
apparent

B

= −
∂( )
∂ ( )

ln

/1
 (5.23)

This strategy typically gives reasonable results for reactions taking place in gas 
phase or in solution, where the pressures or the concentrations can be controlled at 
varying temperatures. On surfaces, however, one needs to be careful when using 
this procedure. Typically, it is still the pressures or the concentrations of the reac-
tants that are controllable. The coverages, which play the role of activities for 
surface reactions, are very difficult to control as the temperature varies. If we 
therefore are trying to find the apparent activation energy of an elementary surface 
reaction (e.g., the disproportionation reaction)

 

E
r

k T

k
A
apparent disprop

B

disprop AB C= −
∂( )
∂ ( )

= −
∂ + +(ln

/

ln ln ln

1

θ θ ))
∂ ( )1 / k TB

 (5.24)

in which we would expect (approximately) k A e E k T
disprop

A B= ⋅ − / , then we obtain

 
E E

k TA
apparent

A
AB C

B

= −
∂ +( )

∂ ( )
ln ln

/

θ θ
1

 (5.25)

There can thus be a discrepancy between the calculated apparent activation barrier 
and the actual activation barrier for the process. If the coverages θ

AB
 and θ

C
 are 

close to one and therefore do not vary much with temperature, then the correction 
is small. If, however, the coverages of AB and C are small and in equilibrium with 
AB and C in the gas phase, the coverages are θ

AB
 ≈ K

ads, AB
 and θ

C
 ≈ K

ads, C
 (as given 

by the Langmuir isotherm; see Chapter 3), such that

 
E E E EA

apparent
A ads AB ads C≈ + +, ,  (5.26)

The reaction barrier, E
A
, that is really measured from the adsorbed states of AB 

and C will thus apparently be the barrier measured from the gas phase when the 
coverages are small and in equilibrium with the gas-phase reactants.
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5.3 the MicroKinetics of several couPled eleMentary 
surface Processes

We shall now utilize the microkinetic expressions for individual elementary surface 
processes, as described in the previous section, in order to establish a model for 
describing full “catalytic cycles.” A heterogeneous catalytic process always includes 
a number of elementary steps happening in sequence one after the other. If the reac-
tion occurs over a surface, for example, the reactants first need to be adsorbed on the 
surface, then move into the vicinity of each other through diffusion processes, then 
react with each other forming the products, and finally desorb. Sometimes, the 
adsorbed reactants need to undergo various activation steps before being able to react 
with each other.

In order for the process to be catalytic, the catalyst should not be consumed in the 
process. A process comprising a number of elementary steps can therefore be written 
up in such a way that the reactants have been turned into products according to an 
integer times the reaction stoichiometry. The surface after having taken part in a 
number of reactions has been reinstated in its original configuration. Such a series of 
elementary reaction steps is referred to as a “catalytic cycle.” When analyzing 
catalytic processes it is important always to look at the full catalytic cycle, as it is 
otherwise very easy to misinterpret key aspects of the process.

Let us first focus on the simple catalytic cycle, whereby two reactant gases A
2
 

and B react to form the gas AB. We assume that the process proceeds in the two 
elementary steps

 A A2 2 2+ →* *  (5.27)

 A B AB* *+ → +  (5.28)

and that the rate constants for the elementary process have already been determined. 
In the second step, which the cycle has to undergo twice for every time the first step 
takes place, the reactant B reacts with the adsorbed A * straight from the gas phase. 
This is a so-called Eley–Rideal step, and it occurs very rarely in heterogeneous 
catalytic reactions between gas-phase reactants. In electrochemistry, it often occurs, 
however, with B having an electrical charge. In the electrochemistry field, this is 
referred to as a Heyrovský mechanism. We here employ it with the sole purpose of 
keeping the kinetics simple. We can now write up the reaction rate expressions

 
R r r k p k1 1 1 1

2
1

2

2
= − = ⋅ ⋅ − ⋅− −A Aθ θ*  (5.29)

 R r r k p k p2 2 2 2 2= − = ⋅ ⋅ − ⋅ ⋅− −B A ABθ θ* (5.30)

In these expressions, R
1
 describes the net rate of A

2
 removal, and R

2
 describes the net 

rate of AB formation. Since both of the two elementary processes need to occur in 
order for the product to be formed and since step 1 changes the coverage that goes 
into step 2, the two rate expressions must be solved simultaneously in order to obtain 
the overall reaction rate. If we think of the net rates in terms of what surface species 
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they create and remove, we see that reaction 1 (eq. 5.27) creates 2A *, while reaction 
2 (eq. 5.28) removes 1A *. This establishes a differential equation for the time 
development of the  coverage of A:

 

∂
∂

= − = ⋅ ⋅ − ⋅ − ⋅ ⋅ + ⋅ ⋅− −

θ
θ θ θ θA

A A B A ABt
R R k p k k p k p2 2 21 2 1

2
1

2
2 22 * * (5.31)

Though there are two coverages, that is, that of free sites and that of A, one differential 
equation is enough to completely specify the reaction, since the coverage of free sites 
follows from the coverage of A through the site conservation rule:

 i
i∑ =θ 1  (5.32)

Often, for example, we are not actually interested in the exact temporal behavior at 
all points of a reactor, but perhaps we aim to model and thereby compare how various 
catalysts behave under similar conditions. In order to do this, we employ the steady 
reaction conditions assumption, which assume that we are describing some point or 
slice of the catalytic reactor, where the pressure and the temperature are given and 
constant. We shall throughout the remainder of the book always make the steady 
reaction conditions assumption. By employing this assumption, the differential 
equation (5.31) is simplified by the fact that the rate constants and reactant and prod-
uct pressures no longer are time dependent. The coverages, however, are of course 
still time dependent.

When there is only one independent variable (coverage) involved, such as in 
Equation (5.31), the general behavior is that the system moves toward a steady state. 
We see that in Equation (5.31), the rate of change of the coverage of A becomes neg-
ative if A gets close enough to 1 and positive if the coverage of A is close to zero. The 
coverage of A will thus move in the direction of lowering the rate of change of the 
coverage of A, and the coverage of A will asymptotically move toward the coverage 
at which the rate is zero.

solving the Kinetic Model

Equation (5.31) may appear to be a relatively simple equation, but it can in fact 
represent rather significant complexity. In an industrial chemical reactor, for 
example, there are pressure and temperature gradients, such that all reactant and 
product pressures, rate constants, and coverages vary through the reactor, and the 
previous differential equation therefore might need to be solved as a function of 
position in the reactor. Furthermore, the pressures and the temperature can vary 
in time and depend on the reaction rate, whereby all the pressures, rate constants, 
and coverages might have to be solved for as a function of time and in many 
positions through the reactor, in order for the model to accurately simulate a reac-
tor’s behavior. It should, however, be noted that when constructing models, it is 
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When we have more coverages varying in time, the temporal behavior of the 
 reaction equations can become more complicated. When two independent 
 coverages are present, the system can still move toward a steady state, but it can 
do  this both in the same damped exponential fashion that it will in the single- 
coverage case, or it can move toward the stationary state in a damped oscillatory 
fashion. The steady state can also be unstable, and the system will then stay in 
undamped oscillatory motion. If there are three or more independent coverages, 
the corresponding system of  nonlinear differential equations can additionally 
exhibit chaotic behavior.

Significant reduction in the complexity of solving the microkinetic equations can 
be achieved if we employ the approximation that the rate of change of all the cover-
ages is zero, that is, the steady-state approximation:

 

∂
∂

=
θi

t
i0 for all  (5.33)

Usually, this is a good approximation, but one should be careful, since it is not always 
guaranteed that there is only one set of coverages corresponding to a steady state. For 
cases where the coverages are time dependent due to an oscillation in rates, a steady-
state approximation is still typically made. This relies on the (not proven) expectation 
for the time-averaged rate of the time-dependent microkinetic model to be similar to 
the rate of an unstable steady-state solution.

The steady-state approximation effectively turns the microkinetic model from a 
set of coupled nonlinear differential equations in time into a time-independent 
algebraic root-finding problem, which is simpler to solve and which can some-
times even be solved analytically. The rate corresponding to the steady-state solu-
tion is also continuous when the rate constants are varied continuously, which we 

typically a more fruitful procedure to start with simple models that will capture 
the correct qualitative behavior, and then refine the model by adding more com-
plexity, until it captures the correct quantitative behavior.

Another issue making the search for a solution to the microkinetic differential 
equations for a catalytic process complex is that the allowable solutions correspond 
to coverages that are strictly in the interval from zero to one at all times, which 
strictly adds to one. If at any point a nonallowable step is taken, the equations 
will have a tendency to move toward a nonallowable solution. The differential 
equations are also extremely “stiff” in the sense that rate constants typically vary 
many orders of magnitude, and integration of the differential equations may 
lead to oscillations on disparate timescales, requiring the use of special solution 
 techniques. Sometimes, the exact differences between very large and almost iden-
tical forward and backward rates are key to determine a stable solution, and just 
representing these with standard-accuracy arithmetic (e.g., typically 16 decimals) 
can be problematic. One may then have to use an arbitrary arithmetic package.
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shall see later can be useful for understanding trends. Whether steady state is a 
reasonable assumption is certainly debatable and is an issue that ought to be inves-
tigated in much further detail.

For the reactions (5.27, 5.28), the steady-state approximation amounts to

 
2 1 2 1 01

2

1
2

2 22
k p k k p k p⋅ ⋅ −( ) − ⋅ − ⋅ ⋅ + ⋅ ⋅ −( ) =− −A A A B A AB Aθ θ θ θ , (5.34)

which prescribes the steady solution through a second-order equation that can be 
solved for the steady-state coverage of species A. Although there will be two solu-
tions of the second-order equation, only one of the two solutions will be positive and 
therefore correspond to a physically reasonable solution.

For many heterogeneously catalytic reactions, the overall reaction rate is typically 
determined by one specific elementary step being particularly “slow.” The concept of 
a “slow” reaction needs to be clarified further. If we look at the microkinetic equations 
and invoke the steady-state approximation, it means that the net rates of the different 
reaction steps are approximately equal (except for some integer factors defined 
through the stoichiometry of the reaction). That is, the net production rates of the 
various types of adsorbates are zero. A “slow” reaction should therefore be under-
stood as being so difficult for the system to carry out that it tends to be less equili-
brated than all the other elementary steps. A useful concept is that of a “strongly 
rate-determining reaction step.” By that, we shall mean a reaction step that is so dif-
ficult that all the other reaction steps are equilibrated, and they therefore have reached 
reversibilities of 1. The assumption that a specific elementary reaction step in a serial 
reaction is strongly rate determining (invoked in conjunction with the steady reaction 
conditions assumption, the steady-state assumptions, and the adsorbate–adsorbate 
noninteraction assumption) means that the kinetic equations become analytically 
solvable no matter how complex they were at the outset.

Assuming a strongly rate-determining step shall here generally refer to invoking 
all four aforementioned assumptions simultaneously, we make this choice, since the 
equations are generally only turned analytical by invoking all four assumptions 
simultaneously, and there are typically no other good reasons to assume a single rate-
determining step, except to avoid solving the microkinetic model numerically and in 
order to give a closed expression for the rate. The analyticity is a general feature of 
simple equilibrium systems, and the assumption of a strongly rate-determining step 
in a serial reaction effectively establishes equilibrium for all reaction steps on either 
side of the rate-determining barrier.

To solve the reaction set (5.27, 5.28) in the strongly rate-determining approxima-
tion, we write the rates in terms of the following reversibilities:

 

R k p
p

K1 1
2

1 1

2

2 12

2

1= ⋅ ⋅ −( ) =A
A

A

θ γ γ
θ
θ*

*

, /  (5.35)

 
R k p

p

p
K2 2 2 2 21= ⋅ ⋅ −( ) =B A

AB

B A

θ γ γ
θ
θ

, /*  (5.36)
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We note that a general feature for a serial catalytic cycle, which relies on reaction 
step i being carried out n

i
 times, the overall equilibrium constant is given by 

K Ki
n

i
i

eq =∏  and the reversibility of the overall reaction is γ γ=∏ i
n

i
i. For the reac-

tion in question, we have n
1
 = 1, and n

2
 = 2, so the overall equilibrium constant is 

K K Keq = ⋅1 2
2 , and the catalytic reaction’s overall reversibility is γ γ γeq = ⋅1 2

2 .

Let us now assume that it is step one, which is strongly rate determining. This 
means that γ

2
 = 1 and therefore γ

1
 = γ

eq
 (in general, we see that γ γi

ni= eq
1/  if i is the 

 rate-determining step). Since step 1 is rate determining, γ
θ
θ2 21= =

p

p
KAB

B A

* / ; lets us 

determine an expression for the fraction of A-covered sites, λ
A
 = θ

A
/θ

*
:

 λA AB B= ⋅ ⋅− −p p K1
2

1 (5.37)

This type of expression is generally available for each adsorbate in a serial catalytic 
cycle when a strongly rate-determining step has been assumed. When each λ

j
 = θ

j
/θ

*
 

has been determined, we can find the coverages of all surface species by using the 
site balance relation in the following form:

 

θ θ*
*

+ =
≠
∑
j

j 1 (5.38)

in which we can take θ
*
 outside a parenthesis,

 

θ λ*
*

1 1+








 =

≠
∑
j

j  (5.39)

thereby expressing the coverage of free sites in known quantities:

 

θ λ*
*

= +










≠

−

∑1

1

j
j  (5.40)

from which all other coverages can be easily determined:

 

θ λ λk k
j

j= +










≠

−

∑1

1

*

 (5.41)

For the reaction in question, we thus get for the coverage of free sites

 
θ* = + ⋅ ⋅( )− − −

1 1
2

1 1
p p KAB B  (5.42)

and the coverage of A:

 
θA AB B AB B= ⋅ ⋅( ) + ⋅ ⋅( )− − − − −

p p K p p K1
2

1 1
2

1 1
1  (5.43)
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which (when only one adsorbate is involved) can be written more compactly as

 
θA AB B= + ⋅ ⋅( )− −

1 1
2

1
p p K  (5.44)

The rate of reaction is then found by taking the rate of the rate-determining step 
(since it has the only net rate that has not been assumed to be equal to zero) by insert-

ing the appropriate coverages and using that γ =
p

p p
KAB

A B
eq

2

2

2

/ :

 

R k p k p p p K
p

p p
K= −( ) = +( ) −






− − −
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 (5.45)

5.4 aMMonia synthesis

We shall now take the ammonia synthesis reaction to exemplify the approach for an 
industrially relevant reaction. Ammonia synthesis has been discussed in Chapters 2 
and 3, and the free energy diagrams have been shown in Figures 3.8 and 3.9 as a 
function of reaction temperature and pressure, respectively. As has been discussed in 
Chapter 2, synthesis of ammonia from N

2
 and H

2
 involves the following steps:

1. N N2 2 2+ →* *

2. H H2 2 2+ →* *

3. N H NH* * * *+ → +
4. NH H NH* * * *+ → +2

5. NH H NH2 3
* * * *+ → +

6. NH NH3 3
* *→ +

It is clear from Figures 3.8 and 3.9 that ammonia synthesis has to be carried out at 
high temperatures in order not to have the whole surface covered by intermediates. 
Similarly, a high pressure is required for the reaction to be exergonic at these temper-
atures. Figure 3.9 shows that at such conditions (high pressure (100 bar) and high 
temperature (700 K)), N

2
 dissociation has by far the highest free energy barrier. We 

can therefore solve the kinetics of ammonia synthesis with the assumption of one 
rate-determining step (1) while treating all other steps as being equilibrated. We will 
do so using the mean field model under steady-state conditions as explained earlier.

The fact that steps (2) to (6) are equilibrated means that

 
γ i i= = −( )1 2 6,  (5.46)

Following the previous description, it follows that

 
K p2

2 2

2H Hθ θ* =  (5.47)
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 K3θ θ θ θN H NH= *  (5.48)

 
K4 2
θ θ θ θNH H NH= * (5.49)

 
K5 2 3
θ θ θ θNH H NH= *  (5.50)

 
K p6 3 3
θ θNH NH= * (5.51)

The first of these equations give the hydrogen coverage as

 
θ θH H= K p2 2 *  (5.52)

And the other equations can be arranged in the same way:
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3 4 5 6
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Combining with the site conservation rule (Equation (5.38), we can solve analyti-
cally to get the coverage of free sites as
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(5.57)

This allows us to write the rate of ammonia synthesis as

 
R R k p= = −( )1 1

2

2
1N θ γ*  (5.58)

where
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p

K p p
NH

eq H N

3
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and

 
K K K K K K Keq = 1 2
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Equations (5.58) and (5.59) give the rate as a function of the partial pressures ( pN2
, pH2

, 
pNH3

) and temperature.
R

1
 is the ammonia production per surface site (defined here as coverage 1, i.e., one 

monolayer of adsorbates) per second. This is also often referred to as the turnover 
frequency (TOF) of the reaction. The TOF of ammonia synthesis at a total pressure 
of 100 bar as a function of temperature on a Ru(0001) step as calculated in this 
simple model is shown in Figure 5.1.

Figure 5.1 shows that the simple model correctly captures that a temperature of 
the order 700 K is needed for the ammonia synthesis rate to be high enough for a 
 reasonable TOF. Industrially, promoters are sometimes added to catalysts in order to 
increase their TOF significantly. This is also the case for ammonia synthesis where 
alkali and earth alkali promoters are employed. The role of these promoters is often 
to decrease the dissociation barrier of the rate-determining step. The issue of pro-
moters will be discussed in Chapter 9.

Figure 5.2 shows the influence of the ratio between N
2
 and H

2
 on the TOF. Since 

N
2
 dissociation is the rate-determining step, increasing the partial pressure of N

2
 will 

decrease the free energy barrier of N
2
 splitting and hence increase the TOF. In terms 

of conversion, however, maximum conversion is obtained with N
2
:H

2
 ratios of 1:3 

since higher N
2
 partial pressures shift the equilibrium toward the educts. Figure 5.2 

is hence sensitive to the conversion level, for example, higher conversion shifts the 

maximum toward p p pN N H2 2 2
/ +( )  close to 0.25. Industrially, ammonia synthesis is 

therefore conducted at ratios close to 1:3.
The model we used so far only provides a very approximate way of calculating the 

TOF. Yet, it captures important parts of the kinetics, and as we will see later, the real 
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figure 5.1 TOF per site and second plotted as a function of reaction temperature. Reaction 
conditions are as follows: p = 100 bar, p pN H2 2

:  = 1:3, and conversion = 10%. Plot based on 
data of ammonia synthesis on the stepped Ru(0001) surface as obtained from CatApp and 
corrected for ZPE contributions (see also Figs. 3.8 and 3.9).
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strength of simple models is that they can be used to look at trends in reactivity from 
one catalyst to the next.

To get a semiquantitative agreement with experimental rates on real catalysts, one 
has to extend the model by adding more complexity. So far, we have, for instance, 
only considered the reaction taking place on one kind of site of the catalyst. 
Interactions between different adsorbates on the surface have also been neglected in 
the mean field approach. We will show in the following a kinetic description of 
ammonia synthesis that includes the full complexity of interactions and reaction 
paths and is able to model the reaction under industrial conditions. Since the barrier 
for dissociation of N

2
 depends on the environment around the dissociation site, we 

can extend Equation (5.58) by summation over different surface configurations (dif-
ferent neighbors around the dissociating N

2
 molecule), each having different rate 

constants k
i
 (corresponding to the different activation energies):

 
R Pk p

i
i i= ⋅ −( )∑ N2

1 γ  (5.61)

Here, P
i
  is the probability of finding a configuration i. Coadsorption of species near 

the empty sites where N
2
 dissociates will increase the dissociation barrier and hence 

decrease k
i
. Equation (5.61) provides a way of including that complexity of the reac-

tion. In addition, one needs to take care of the fact that N
2
 dissociation at a step site 

proceeds with one N atom at the top of the step and another at the bottom; there are 
therefore two distinct sites that both have different binding energies and hence will 
have different coverages. The probability, P

i
, must be calculated including the effect 

of interactions between all adsorbates.
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figure 5.2 TOF per site and second plotted as a function of partial N
2
 pressure. Reaction 

conditions are as follows: p = 100 bar, T = 700 K, and conversion = 10%. Plot based on data of 
ammonia synthesis on the stepped Ru(0001) surface as obtained from CatApp and corrected 
for ZPE contributions (see also Figs. 3.8 and 3.9).
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In order to compare the calculated rate to experiment, the only link is the number 
of active sites (steps) in the experimental setup. This can be estimated from electron 
microscopy, such as Figure 1.1. A direct comparison between the model and experi-
ments at industrial conditions is shown in Figure 5.3.

While there is not quantitative agreement between theory and experiment, it is 
clear that the picture of the active site and the basic processes taking place during 
ammonia synthesis is quite good. This gives confidence that the picture developed 
here is a useful one.
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EnErgy TrEnds in CaTalysis

6

Obtaining a full kinetic description of a surface chemical reaction involves measuring 
or calculating the binding energy of each intermediate in the reaction together with 
the energy barriers needed to go from one state to the next. In order to understand 
trends in catalytic activity, one would need this information for a number of different 
catalytic materials with different surface structures. In the following, we describe a 
set of tools that can be used to reduce the parameter space that one needs to cover to 
get a qualitative description of the reaction energetics involved in a given process. 
The end result is a mapping of the full potential energy diagram onto a limited set of 
parameters, which we call descriptors. Understanding trends in reactivity then 
becomes a question of understanding trends in a limited set of parameters.

In this chapter, we will discuss how adsorption energies and activation energies 
for surface chemical processes are often correlated. As discussed in Chapter 2, there 
are two distinct types of surface–adsorbate interactions: physisorption and chemi-
sorption (see Fig. 6.1). We will treat different kinds of correlations in the two types 
of interactions separately in the following.

6.1 EnErgy CorrElaTions for PhysisorbEd sysTEms

The strength of the van der Waals interactions responsible for physisorption depends 
strongly on the spatial extent of the adsorbate, and for comparable systems, these 
should scale well when normalized to their active components.
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In Figure 6.2, experimental results for alkane physisorption on Pt(111) are plotted 
as a function of chain length showing a linear trend. This suggests that each –CH

x
– 

unit within the alkane chain has a unique contribution of the order 0.15 eV to the 
bond strength and that the overall binding energy is given approximately by the sum 
of these contributions. This greatly simplifies the description of physisorption 
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figurE 6.1 schematic energy profile for the adsorption of some diatomic molecule A
2
 on 

some substrate as a function of a specific reaction coordinate, which could be the distance 
 between the substrate surface and the center of mass of the molecule.
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figurE 6.2 Experimental data for physisorption of linear alkanes on Pt(111). Adapted 
from Tait et al. (2006).
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 systems and contributions from van der Waals interactions to bonding (including sta-
bility of transition states) from larger molecules where such effects can dominate.

6.2 ChEmisorPTion EnErgy sCaling rElaTions

We next consider situations where there is considerable interaction between adsor-
bate and adsorbent. The strength of the interaction is such that the electronic  structure 
of the adsorbate changes significantly and a chemical bond is formed. In Chapters 8 
and 12, we will see how to understand the bonding between adsorbates and surfaces 
in more detail.

It has been found very generally that adsorption energies of different surface inter-
mediates that bind to the surface through the same atom(s) scale with each other. 
In Figure 6.3, we show examples of scaling relations for CH

n
 species (n = 1, 2, 3). 

What is shown is the adsorption energy of CH
n
 on a number of metals and for two 

different surface structures plotted as a function of the adsorption energy of atomic 
C. For a given adsorbate and surface structure, the relationship is to a good approxi-
mation linear

 
∆ ∆E En

nCH s C= +γ ξ( )  (6.1)

and, interestingly, to a good approximation γ
s
(n) = (4 − n)/4. similar plots for nH

n
 and 

OH
n
 species give γ

s
(n) = (3 − n)/3 and γ

s
(n) = (2 − n)/2, respectively.
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figurE 6.3 dFT-calculated adsorption energies of CH
x
 species plotted against the adsorp-

tion energy of C for a number of different transition metals. The black and gray symbols indi-
cate close-packed and stepped surfaces, respectively. The lines show the best fits to the points. 
Adapted from Abild-Pedersen et al. (2007).
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The results of Figure 6.3 suggest a simple valency rule for the scaling slope. If A 
has a maximum valence of N and n ≤ n of these bonds is saturated by bonding to 
other atoms, then the scaling slope is given by:

 
γ s ( )n

N n

N
=

−
 (6.2)

The simplest way to understand this is to say that the N levels are degenerate, 
separable, and linearly independent such that each contributes with the same 
amount to the total binding energy when A couples to a surface. saturating one of 
these energy levels by bonding to H or another atom will remove it from the 
equation and hence reduce the number of bonds the element can make with the 
surface.

We note that the scaling parameter is independent of the surface. The cutoff, ξ, in 
Equation (6.1), on the other hand, depends on the surface structure. Hence, in order 
to obtain information about how well a given structure binds an adsorbate, given that 
one knows how all the base elements (C, O, n, s, etc.) bind, one needs to do only a 
single value measurement or calculation of the adsorption energy, and the rest can be 
scaled from the binding of the base elements. This enables us to write a simple 
expression for the reaction energy of an elementary step as

 
∆ ∆ ∆ ∆E E

i

N

i
Ai= ( ) +

=
∑

1

γ ξ  (6.3)

Here, the sum is over all atoms, i, forming bonds to the surface, Δγ
i
 is the change in 

the scaling slope or valency parameter during the reaction, iAE∆  denotes the binding 
energy of the base elements relevant for the reaction, and Δξ is a constant that one 
has to measure or calculate for a single system.

In Figure 6.4, it is shown how well the reaction energies are described using the 
model compared to the full dFT calculations.

For any unsaturated hydrocarbon with n carbon atoms, we would expect that

 

γ s = −










= =
∑ ∑
j

n

i

k

1 1

1
4

1
 (6.4)

where k is the number of saturated bonds per carbon atom. In Figure 6.5, we show 
adsorption energies of CH

x
–CH

2
 where x ∈ {0, 1, 2} on close-packed (111) and 

stepped (211) surfaces as a function of the adsorption energy of atomic carbon. The 
scaling relations define two regions: one region where the metal surface is reactive 
enough to alter the intrinsic C–C bond and another region where the surface is too 
noble. The theoretical slopes given by Equation (6.4) have been used to obtain the 
best-fit lines in Figure 6.5.

It is evident from the earlier discussion that scaling among adsorption energies 
should not be limited to transition metal surfaces. In fact, even for metal-terminated 
surfaces of more complex systems like transition metal compounds (oxides, nitrides, 
sulfides, and carbides), where there is mixed covalent, ionic bonding between the 
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surface cations and anions, there is scaling between electronically similar adsorbates. 
In Figure 6.6, we show such relations for oxide, nitride, and sulfide surfaces.

6.3 TransiTion sTaTE EnErgy sCaling rElaTions 
in hETErogEnEous CaTalysis

given that the variations in adsorption energies and transition state energies are 
governed by the same basic physics, it is not surprising that transition state energies 
also correlate with adsorption energies. As for the relationships between adsorption 
energies, scaling between adsorption energies and transition state energies is 
extremely important in building an understanding of heterogeneous catalysis, and at 
a more fundamental level, they provide guidance in building kinetic models to under-
stand trends in catalytic activity.

let us begin by defining a more general relationship between transition state 
energies and adsorption energies. let ETs be a set of energies describing the energy 
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figurE 6.6 Figures show nH
x
 versus n scaling on transition metals and metal nitrides, 

OH versus O scaling on transition metals and metal oxides, and sH versus s scaling relations 
on transition metals and metal sulfides. data points involve stepped transition metal surfaces 
(black), close-packed transition metal surfaces (blue), and the nitride, oxide, and sulfide sur-
faces (red). The dashed line shows the best fit to the points using the theoretical slope. Adapted 
from Fernandez et al. (2008). (See insert for color representation of the figure.)
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needed to move between two minima on the potential energy surface for a set of 
 different catalysts. Furthermore, let ΔE

i
 be a set of adsorption energies, relevant for 

the process of moving between the two minima. We can now define a functional form 
of ETs(ΔE

i
), which is a map from the space of adsorption energies to the space of 

transition state energies.
To first order in ΔE

i
, ETs will be given as a linear combination of ΔE

i
:

 
E E

i
i i

TS = +∑γ ξ∆  (6.5)

The set of functions defined in Equation (6.5) constitute a class of linear relations—
the linear transition state energy scaling relations. note that we can always restrict 
the variation of adsorption energies to be small enough for the scaling to be linear, 
but for a broad enough range of energies, nonlinear scaling is always found.

The transition state scaling relations imply scaling relations for the activation 
energy of a surface chemical reaction (see Fig. 6.7). let X and Y define two minima 
on a potential energy surface; if both ETs  and ΔE

X
 scale with a set of adsorption 

energies, then E
a
 will as well.

linear correlations between activation (free) energies and reaction (free) energies 
is a well-established approach in the understanding of trends in chemical reactions 
that dates back to Brønsted in 1928 and Evans and Polanyi 10 years later. such BEP 
relations have for a long time been assumed to hold in heterogeneous catalysis. BEP 
relations can be considered a subset of the relations defined in Equation (6.5). As 
illustrated in Figure 6.7, the activation energy of an elementary process is the energy 
difference between a transition state energy and the energy of an intermediate. 
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ΔEY

ΔEX

ΔEreact

Ea

ETS

figurE 6.7 Potential energy surface showing schematically the relevant energies 
needed to describe the jump between two minima X and Y. E

a
 and ETs both describe the 

first-order saddle point between X and Y relative to the energy of X and the energy refer-
ence defined by the dashed line, respectively. ΔE

react
 is the reaction energy defined by the 

difference in energy of state Y and state X, and ΔE
x
 and ΔE

y
 are energies relative to the 

reference energy of state X and state Y, respectively.
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similarly, reaction energies are differences between energies of two intermediates. 
If  a BEP relation exists, then there will also be a transition state scaling relation. 
There can, however, be many transition state scaling relations that are not covered by 
a BEP relation. By restricting the independent variable to the reaction energy in a 
BEP relation, one does not derive the full potential of the scaling relations.

It is only with the advent of sufficiently accurate electronic structure calculations 
that it has become possible to obtain transition state energies and adsorption energies 
over a wide enough energy range to establish transition state scaling relations with 
sufficient statistics. Figure  6.8 shows examples of linear transition state scaling 
relations.

The slopes of these relations depend on the reaction studied. For dissociative 
adsorption processes involving simple diatomic molecules, the slope of the transition 
state energy as function of the dissociative chemisorption energy is often close to 1. 
This implies that the electronic structure of the transition state is similar to that of the 
final state, and hence, it is indicative of a late transition state. This behavior can be 
observed directly in the transition state structures for nO dissociation, as is shown in 
Figure 6.8b.

The transition state scaling relations provide a rigorous way of defining the effect 
of surface structure on reactivity. such a definition is not simple in general since a 
change in surface structure also changes the surface electronic structure, and it is dif-
ficult to distinguish between purely geometrical and the surface structure-related 
electronic structure effects. The transition state scaling relations allow one to look at 

figurE 6.8 (a) linear transition state energy relationship for dehydrogenation of methane 
over a number of fcc (211) (solid light gray circles) and (111) (solid black squares) transition 
metal surfaces. The stepped surfaces show a slightly higher dissociation barrier than the (111) 
surfaces at a given dissociative chemisorption energy ΔEdiss, but the electronic effect is much 
larger than the geometrical effect. (b) The linear transition state energy relationship for nO 
dissociation over a number of stepped (solid light gray circles) and close-packed (solid black 
circles) surfaces as a function of the dissociation energy. The line for open surfaces lies signif-
icantly below that of the close-packed surfaces (on the order of 0.7 eV). At given reactivity of 
the surface, nO thus prefers dissociating over the undercoordinated sites at the steps. Here, the 
geometric effect is larger than the electronic effect. Adapted from nørskov et al. (2008) and 
Falsig et al. (2013).
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differences in transition state energy for a fixed adsorption energy. To the extent that 
the adsorption energy defines the electronic structure effects, then a shift in a scaling 
line is a direct measure of effects linked to the local geometry of the active site. 
We note that in principle there is a different line for every surface geometry, so one 
should think of a family of transition state scaling lines. For nO dissociation, a large 
number of geometries have been investigated, and the lines for the close-packed and 
the stepped surface shown in Figure 6.8b basically define the upper and lower bound 
to the scaling lines. A close-packed surface and a stepped surface therefore represent 
two limits to reactivity for a given catalyst material and form a good test ground for 
understanding structural effects in catalysis.

A guideline for identifying surface geometries with low-lying lines is to find 
 surfaces where the two fragments of the reaction both can be stabilized without too 
many “shared” metal atoms. In Chapters 8 and 12, we will discuss electronic struc-
ture effects in more detail.

6.4 univErsaliTy of TransiTion sTaTE sCaling rElaTions

It turns out that if one compares dissociation of a number of similar molecules, their 
transition state energy scale with the dissociative chemisorption energy in much the 
same way (see Fig. 6.9). This is a remarkable result indicating that the nature of the 
relationship between the final state and the transition state for dissociation of these 
molecules is quite similar. In fact, for the large number of systems considered 
in Figure 6.9, essentially, all transition states look the same for a given surface 
structure.

We note that the geometrical effect discussed for nO dissociation holds for all the 
adsorbates considered in Figure 6.9. This means that CO, n

2
, and O

2
 dissociation 

should also be much faster at steps than at the most close-packed surface. The linear 
transition state scaling relations provide an adsorbate-independent way of estimating 
activation energies based on the adsorption energies of the product species. As we 
shall see in Chapter 7, these relationships can be used to obtain information about 
how good a material is as a catalyst for a given reaction. The universal relation for the 
close-packed surfaces shown in Figure 6.9 is found to be

 E ETS
diss eV= ± ⋅ + ±( . . ) ( . . )0 90 0 04 2 07 0 07∆

and the relation for the stepped surfaces is

 E ETS
diss eV= ± ⋅ + ±( . . ) ( . . )0 87 0 05 1 34 0 09∆

The slopes of the relations are very similar and close to one, showing that the 
transition states of the reactants considered indeed are very final state like. The intercepts 
are different, and this difference identifies the structure dependence of the relations 
showing that for a given value of the dissociative chemisorption energy, over a range 
of relevant energies, the stepped surfaces have barriers that are much less than on the 
close-packed surfaces.
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These relationships turn out to be more general, thus including other classes of 
reactions and different kinds of surface terminations. In Figure 6.10, we show that to 
a reasonable approximation, calculated transition state energies and dissociative 
chemisorption energies on a series of coupling reactions involving C–C, C–n, C–O, 
n–O, and O–O species follow a universal relation. In Figure 6.11, we see the same 
behavior for diatomic molecules but now on a series of different transition metal 
oxide surfaces in the rutile structure.

We note that there are exceptions to these scaling relations, especially when mol-
ecules with weak interatomic bonds are considered such as in the dissociation of H

2
. 

However, all these deviations can be understood in terms of general models within 
electronic band structure theory.

It is important to stress that even though deviations from the linear behavior 
are seen, these correlations are sufficient to describe trends in reactivity, as we shall 
see in the next chapter. We also note that a higher accuracy can be obtained if one 
considers one specific reaction only.
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Activity And Selectivity MApS

7

As described in detail in Chapter 5, elaborate kinetic methods are available to provide a 
detailed description of the rate of a given heterogeneous reaction. In this chapter, we shall 
focus on the more general description of trends in catalysis. Mean-field microkinetic 
models are in many cases adequate for semiquantitatively describing the reaction rate 
and have some distinct advantages when studying trends, since the introduction of a few 
additional assumptions (such as inclusion of a rate-determining reaction step and the 
steady-state approximation) will often result in the model becoming entirely analytical.

The microkinetic models in this section are built upon scaling relations of the type 
described in Chapter 6. It will be shown that an underlying scaling relation in general 
leads to the existence of what we call an activity map, which is a map of the catalytic 
activity as a function of a few descriptors. In many cases, such a map shows a single 
maximum for a certain set of descriptor values, and it is often also called a volcano 
relation. In a similar way, we will introduce selectivity maps showing selectivity as 
a function of the descriptors.

7.1 diSSociAtion RAte-deteRMined Model

We start by considering the simplest possible surface-catalyzed reaction treated in 
some detail in Chapter 5:

 A B AB2 2 2+ →  (7.1)
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The reaction scheme of elementary steps can be written as

 A A2 2 2+ →* *  (7.2)

 A B AB* *+ → +  (7.3)

where an asterisk represents an active surface site. A schematic energy diagram for 
this reaction is shown in Figure 7.1.

let us assume that A
2
 dissociation is rate limiting. The turnover frequency (TOF) 

of the reaction is then (see also eq. 5.35)

 
r T p k p, A( ) = −( )1

2

2
1θ γ*  (7.4)

Here, k
1
 is the temperature-dependent rate constant for the forward reaction 

in  equation (7.2), which is assumed to follow an Arrhenius expression 

k
k T

h
e e

S
k

E
k T

1 =
−

B
a

B

a

B

∆

. γ is the overall gas-phase approach to equilibrium, which can 

be written as

 

γ =
p

K p p
AB

eq A B

2

2

2

 (7.5)

where K
eq

 is the equilibrium constant for the overall reaction, p
B
 is the pressure of 

reactant B, and p
AB

 is the pressure of the product, AB. The coverage of free sites can 
be determined analytically as
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+
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FiguRe 7.1 potential energy diagram for the reaction A
2
 + 2B → 2AB where A

2
 adsorbs 

dissociatively on the surface and B reacts without prior adsorption with adsorbed A.
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where K e
G

k T
1

1

=
− °∆

B  is the equilibrium constant for the reaction step in equation (7.2) 
with the standard Gibbs free energy of ∆ ∆ ∆G E T S1 1 1

° = − . Under the aforementioned 
assumptions, it is possible to obtain an analytical expression for the TOF. The disso-
ciative chemisorption energy ΔE

1
 is the quantity that determines the number of free 

sites. Hence, very reactive surfaces (surfaces with very negative ΔE
1
) will poison the 

reaction in the sense that there will be very few sites for A
2
 to dissociate. The TOF 

will thus decrease when ΔE
1
 → − ∞.

For a given surface, the transition state scaling relation discussed in Chapter 6 
relates the activation energy of step 1, E

a
, to the dissociative chemisorption energy, 

ΔE
1
 :  E

a
 = γΔE

1
 + ξ. The activation barrier will be large on very noble surfaces (ΔE

1
 

numerically small and negative or even positive), and as a consequence, the TOF will 
decrease as ΔE

1
 → ∞. In the intermediate ΔE

1
 range, the TOF passes through a 

maximum.
We note that there are two parameters describing the catalyst, ΔE

1
 and E

a
, and 

because of the transition state scaling relation, there is only one independent variable, 
which we choose to be ΔE

1
. The scaling relation means that there is a single descriptor 

of reactivity, ΔE
1
 . We will show later in this chapter how the scaling relations allow 

the identification of a few descriptors of reactivity even for more complicated 
reactions.

To illustrate how to analytically determine the activity map for the simple model 
reaction, we will make some further (rather arbitrary but reasonable) assumptions:

 • The reaction energy of Reaction (7.1) is −0.3 ev (see also Fig. 7.1).

 • The entropy of gas-phase A
2
 and AB is 0.002 ev/K. The entropy for gas-phase 

B is 0.0015 ev/K (see also entropies for gas-phase species in Chapter 3).

 • The entropy of element A adsorbed on the surface is assumed to be negligible. 
This is not generally true, but it is often a sufficiently good approximation (see 
Chapter 3).

 • The transition state for the dissociative chemisorption and for desorption is 
strongly constrained. This assumption allows us to set the transition state 
entropy to zero, and the prefactors in the Arrhenius expressions for the rate 

constants of desorption of AB and redesorption of A
2
 thus become 

k T

h
B  (see 

Chapter 4).

 • dissociation of A
2
 follows a transition state scaling line with the slope of 0.87 

and the intercept of 1.34 ev, which is what is found for the dissociation of 
diatomic molecules on the 211 steps of transition metal surfaces (see Chapter 6).

As shown in equation (7.4), the TOF depends on the product of k
1
 and θ*

2 . The 
dependencies of k

1
 and  θ

*
  on ΔE

1
 are shown in Figure  7.2 together with the 

overall TOF r. While the number of free sites, θ
*
, decreases with higher ΔE

1
 due to 

poisoning of the surface by species A*, k
1
 increases steadily until the barrier for 

A
2
 dissociation becomes zero and k

k T

h1
1310~ ~B

. The maximum TOF is obtained 
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when θ
*
 is around 0.5 (see Fig. 7.2). This can be viewed as a general rule and the top 

of highest activity is located at approximately this position for many heterogeneously 
catalyzed reactions.

The result in Figure  7.2 illustrates the Sabatier principle, which states that the 
catalytic activity for a given reaction follows a volcano-shaped curve, because only 
an intermediate binding of intermediates on the surface of a catalyst will give a rea-
sonably active catalyst. We can understand the origin of this principle based on the 
treatment earlier. The underlying, implicit assumption is that there is a monotonic 
relationship between the rate of activating the reactants and the rate of formation of 
the products. This is exactly what the transition state scaling relations provide. The 
Sabatier principle was formulated almost 100 years ago and has provided an extremely 
valuable qualitative way of understanding why there is an optimum catalyst. The 
analysis outlined earlier provides three additional insights. First, it provides a way to 
identify which “binding” needs to be “intermediate”; that is, it provides a systematic 
way of identifying which adsorption energies are descriptors (ΔE

1
   for the simple 

problem earlier) for a given reaction. These are the properties that need to be optimal 
to give the highest rate. The tool for identifying descriptors is the concept of scaling 
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. Reaction conditions are T = 300 K, 
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 relations. The second, crucial new component is that having identified the descriptors 
we can quantify them. That means that we can go beyond saying that “there is an 
optimum value” to identifying which is the optimum value. This makes the analysis 
predictive and useful in identifying leads for new catalysts. Finally, the analysis 
allows an understanding of how the optimum depends on reaction conditions. In the 
following, we first use the simple generic reaction to discuss some general principles 
for how the optimum catalyst depends on reaction conditions. We then introduce 
a  simplified analysis tool, and finally, we apply the approach to examples of real 
 catalyst reactions.

7.2 vARiAtionS in the Activity MAxiMuM with 
ReAction conditionS

We will now show how the activity map changes when the approach to equilibrium, 
the temperature, and the pressure of the reaction are varied independently. various 
reactions that proceed via the dissociation of diatomic molecules can have drasti-
cally different overall reaction energies. It is therefore often very useful to write the 
microkinetics in terms of the approach to equilibrium instead of the product pressure 
and reaction energy. Reactions with different reaction energies all follow the same 
microkinetic model for a given approach to equilibrium. However, for the various 
reactions, a given approach to equilibrium will correspond to very different product 
pressures and hence a different reaction conversion. The activity maps obtained for 
different approaches to equilibrium for the microkinetic model discussed earlier 
with dissociation as rate determining are shown in Figure 7.3. The TOFs are plotted 
as a function of the dissociative adsorption energy, ∆E

1
. The activity curves increase 
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in magnitude when the approach to equilibrium becomes smaller with their top shift-
ing to stronger bonding (more negative ΔE

1
). This is especially true when the 

approach to equilibrium has a very low value (γ < 0.001). In practice, this often indi-
cates that one does not necessarily want to use the same catalyst at the front end of a 
tubular reactor, where conversion levels are still low, as at the back end, where 
conversion levels are high and γ will be closer to one.

Ammonia synthesis is an example of a process where activation of the reactant 
(n

2
) is rate determining for the most interesting catalysts. In that process, iron is the 

optimal catalyst far from equilibrium, but once the last part of the reactor bed is 
reached and γ ~ 1, ruthenium, which is more noble (and more expensive), has been 

used to replace iron. Since K e
G

k T
eq

B=
− °∆

,  the more exothermic a reaction is, the larger 

K
eq

 becomes. For a given conversion, the approach to equilibrium, γ =
p

K p p
AB

eq A B

2

2

2

, 

therefore becomes smaller. This means that the maximum of the activity curve shifts 
to more negative ΔE

1
 for more exothermic reactions.

We will now use the same microkinetic model to investigate how the activity map 
changes with temperature. In Figure 7.4, the dependence of the TOF on the temper-
ature is shown. For high temperatures, the optimal catalyst moves toward more 
 reactive surfaces, whereas more noble catalysts are closer to the optimum at lower 
temperature. The decisive factor for this is the availability of free sites on the surface 
where A

2
 can dissociate rather than the activation of A

2
 itself. Higher reaction 

 temperatures are driving products away from the surface (due to their increased 
entropy contribution in the gas phase) and thus provide more free sites.

Figure 7.5 shows how the TOF depends on the pressure of A
2
, the most important 

reactant in the process we are treating here. The activity curve does increase with 
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increasing pressure of A
2
. However, its position varies much less with pressure than 

it varies due to changes in the approach to equilibrium and the temperature.

7.3 SAbAtieR AnAlySiS

We now introduce a method that provides the simplest possible conceptual frame-
work for analyzing microkinetic models of heterogeneous reactions, the so-called 
Sabatier analysis. We call it so because it brings out the qualitative reasoning behind 
the Sabatier principle in a quantitative form.

Consider again Reaction (7.1), but let us now relax the assumption that the 
activation of A

2
 is rate determining. The approach to equilibrium for the full reaction 

is shown in equation (7.5), and we can write the equilibrium constant in terms of 
equilibrium constants for the two elementary steps:

 
K K Keq = 1 2

2  (7.7)

and hence

 γ γ γ= 1 2
2  (7.8)

We will now focus on the net reactions proceeding in the forward direction so that

 0 1≤ ≤γ  (7.9)

 0 11≤ ≤γ  (7.10)

 0 12≤ ≤γ  (7.11)
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and using equation (7.8), this means that

 0 11≤ ≤ ≤γ γ  (7.12)

 0 12
2≤ ≤ ≤γ γ  (7.13)

We will start by analyzing the reaction on the surface of a catalyst that bonds interme-
diates too strongly (to the left of the maximum in the activity map, Fig. 7.2). The sur-
face coverage will be high (θ

A
 ≈ 1) and desorption of AB will be the rate-determining 

step. This means that the first reaction step (dissociative adsorption of A
2
, eq. 7.2) is 

in equilibrium and hence that γ
1
 ≈ 1 and γ γ2 ≈ . The TOF, r

tot
, can now be approxi-

mated via the second reaction step, r
2
:

 
r r k ptot B= = −( )2 2 1 γ  (7.14)

For too noble surfaces (to the right of the maximum in the activity map, Fig. 7.2), 
where dissociation of A

2
 is rate determining, the coverage of free sites will be approx-

imately 1 (θ
*
 ≈ 1), and we have the second step in equilibrium so that γ

2
 ≈ 1 and γ

1
 ≈ γ. 

For such catalysts, we can approximate the TOF as

 
r r k ptot A= = −( )1 1 2

1 γ  (7.15)

Because each coverage has an upper limit of 1, the total rate must be limited by both, 
equations (7.14) and (7.15) leading to the Sabatier map expressed as

 
r r r k p k ptot A B,= ( ) = −( ) −( )( )min min ,1 2 1 22

1 1γ γ  (7.16)

Figure  7.6 shows the Sabatier map in comparison to the full solution from the 
microkinetic model. The Sabatier map gives an excellent description for small 
approaches to equilibrium (γ → 0). There is some discrepancy at the maximum where 
the Sabatier analysis predicts too high rates. This can be attributed to a failure of 
describing coverages that are in between 0 and 1, since these are the limiting cases 
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the Sabatier map was constructed for (coverages on the top of activity curves are 
u sually around 0.5, see Fig.  7.2). For larger approaches to equilibrium (γ → 1), 
 however, the optimal catalyst is not defined by the position of the Sabatier map, but 
moves to more noble surfaces.

The Sabatier analysis can in principle be performed for any reaction. In case that 
there are more than two reaction steps, the Sabatier volcano could be constructed in 
analogy to equation (7.16) by assuming that all intermediates that go in the forward 
direction have optimal coverages and by calculating the approach to equilibrium for 
each forward rate from the given approach to equilibrium for the overall reaction (as 
done in eq. 7.8 for the reaction earlier) under the assumption that all other partial 
reactions are in equilibrium. This will give a first approximation to each forward rate 
of the reaction. The Sabatier volcano provides an upper limit to the total rate by 
setting this rate equal to the minimum of all forward rates:

 
r r r rntot , , ,= …( )min 1 2  (7.17)

The Sabatier volcano is in general useful if one wants to obtain an upper limit of the 
overall rate in cases where there are many competing reaction steps, and it is not a 
priori clear which steps are rate determining. Its limitation to small approaches to 
equilibrium, however, should be kept in mind.

7.4 exAMpleS oF Activity MApS FoR iMpoRtAnt 
cAtAlytic ReActionS

7.4.1 Ammonia Synthesis

We will now analyze more complex reactions than the simple generic catalytic reac-
tion discussed earlier, starting with the ammonia synthesis reaction. The free energy 
diagram of ammonia synthesis has been discussed in Chapter 3 (see Figs. 3.9 and 
3.10), and a microkinetic model for this reaction has been developed in Chapter 5. 
The microkinetic model deals with ammonia synthesis on a stepped Ru surface, and 
we will now use the same model and extend it to all possible (stepped) metal surfaces 
through the scaling relations for adsorbates and for transition states as introduced in 
Chapter 6.

The microkinetic model gives the TOF as

 
R T p k p, N( ) = −( )1

2

2
1θ γ*  (7.18)

where k
1
 is the forward rate constant for the splitting on n

2
 and the approach to 

equilibrium, γ, is

 

γ =
p

K p p
NH

eq N H

3

2 2

2

3
 (7.19)
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For the ith reaction step, the equilibrium constant is given by K ei

G
k T

i

=
−∆

B . The 
Gibbs free energy of the reaction step is explicitly dependent on the reaction energy, 
ΔE

i
, through ΔG

i
 = ΔE

i
 – TΔS

i
, which can be expressed via the scaling relations as

 

∆ ∆ ∆ ∆E Ei
j

N

j
j= ( ) +

=
∑

1

γ ξA

 (7.20)

As defined in Chapter 6, Δγ
j
 is the change in the scaling parameter for the reaction step 

considered, ΔE jA  is the variation in binding energies of the base elements, and Δξ is the 
part that depends on the substrate and thus has to be calculated for a single system.

The reaction energies are thus completely determined by ΔE
n
 and ΔE

H
. For the 

metals of interest here, the variation in ΔE
H
 is very modest, so we choose to neglect 

that. This means that the coverage of free sites is given solely by ΔE
n
. The transition 

state scaling behavior of n
2
 splitting is shown in Figure 7.7 for a range of transition 

metal steps. As for θ
*
, k

1
 also becomes a function of ΔE

n
. Under the assumption that 

n
2
 splitting is the rate-determining step for all ΔE

n
, we can express the TOF, R, as

 
R T p E

k T

h
e e p

S

k

E

k T, , *∆
∆ ∆

N
B

N

a

B

a

B( ) = −( )
−

2

2 1θ γ  (7.21)
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where

 

θ*

/ /

=
+ + + +

1

1 2

2 5 6 2 4 5 6 2
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K p
p
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H
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3

K K K

p

K
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 (7.22)

Figure 7.8 plots the TOF of ammonia synthesis as a function of ΔE
n
 as obtained from 

the microkinetic model in conjunction with scaling relations for adsorbates and 
transition states. A comparison to experimental data is also shown. As can be seen 
from Figure  7.8, the simple model reproduces the experimental findings qualita-
tively. note here that the experimental data is for promoted catalysts. promotion 
with, for example, potassium can significantly increase reaction rates by reducing 
splitting barriers due to electrostatic effects. In the case of ammonia synthesis, 
potassium also decreases the binding of the adsorbates, which decreases product poi-
soning and further increases rates. We will discuss effects of promoters in more detail 
in Chapter  10, but we can see here that the promoted activity map derived from 
theory resembles the experimental one much more quantitatively.

7.4.2 the Methanation Reaction

Ammonia synthesis is a good example of how one can simplify the description of a 
reaction network by the use of a single descriptor. Scaling relations always provide a 
way to reduce the number of independent variables characterizing the catalyst, but in 
most cases, more than one descriptor is necessary. An important reason is that ΔE

C
, 

ΔE
n
, and ΔE

O
 do not scale well with each other. That means that reactions involving 

the bonding of, for example, carbon- and oxygen-containing species to the surface 
will inevitably have two activity descriptors (ΔE

C
 and ΔE

O
).

An example where two descriptors are necessary is the CO methanation reaction:

 CO H CH H O+ → +3 2 4 2  (7.23)

Another distinct difference from ammonia synthesis is the fact the CO is a strongly 
adsorbed precursor as compared to n

2
, which only binds weakly to most transition 

metal surfaces. Hence, there is need for including an extra reaction step, as described 
in Chapter 5. The rate is given by

 
R p T E E kC O CO, , , *∆ ∆( ) = −( )2 1θ θ γ  (7.24)

The full solution of the kinetics using that all reaction barriers and adsorption energy 
of intermediates scale with ΔE

C
 and ΔE

O
 is shown in Figure 7.9.

The activity map for CO hydrogenation shows a single maximum for (ΔE
C
, ΔE

O
) ≈ 

(0.5 ev, −3.0 ev), and it can be seen that Ru and Co the elemental metals are closest to 
the maximum. This is also what is found experimentally. ni is used industrially simply 
because it is cheaper than the other metals.
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Knowing the optimum value for (ΔE
C
, ΔE

O
) allows a search for other catalysts for 

this process. In such a computational search, it was predicted that ni–Fe alloys 
should be closer to the maximum than ni and Fe alone. This was confirmed in 
subsequent experiments (see Fig. 7.10).
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3
Fe catalyst is clearly better than 

both pure ni and pure Fe as suggested by the analysis in Figure 7.9.
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FiguRe 7.9 TOF of CO hydrogenation to methane and water as a function of ∆E
C
 and ∆E

O
. 

Reaction conditions are 573 K, 40 bar H
2
, and 40 bar CO. values for ∆E

C
 and ∆E

O
 for the 

stepped surfaces of various transition metals are depicted. Taken from nørskov et al. (2011) 
with permission from proceedings of the national Academy of Sciences. (See insert for color 
representation of the figure.)
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tRendS in Activity FoR thiophene hydRodeSulFuRizAtion

Hydrodesulfurization (HdS) catalysts are used to remove sulfur and nitrogen from 
crude oil. The catalysts used are usually based on doped MoS

2
, and these systems 

have been developed and optimized for several decades. In view of stricter leg-
islation regarding sulfur content of transportation fuels, further improvements to 
these catalysts are needed. Again, it is important to know what the descriptors of 
catalytic activity are in order to be able to optimize them.

A number of transition metal sulfide catalysts have been studied for the HdS 
of thiophene (C

4
H

4
S), which is commonly used as a simple model for the sulfur 

compounds in crude oil. Typically, there are two types of difficult steps, the 
breaking of the C–S bond and the removal of adsorbed S from the catalyst surface.

The former is most facile when the S-surface bond is strong, while that makes 
the latter more difficult. A Sabatier analysis using the adsorption energy of SH 
as descriptor describes the known trends quite well (see Fig. 7.11). RuS

2
 and Co- 

and ni-promoted MoS
2
 are found to be closest to the top, but there may be room 

for improvement.
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FiguRe 7.11 The rate of HdS of thiophene as a function of HS binding energy. The 
predicted rate per active site relative to MoS

2
 is marked by the solid line, and the vertical lines 

mark the HS binding energy of different sulfide surfaces. experimental data which show 
considerable scatter are also shown. All data are relative to RuS

2
. The shaded area indicates 

the uncertainty in the rates. Taken from Moses et al. (2014) with permission from Springer.
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FiguRe 7.12 Calculated TOFs as a function of carbon and oxygen binding energies for (a) methane, (b) methanol, 
and (c) ethanol formation along with (d) selectivity map. Reaction conditions are at 593 K, 60 bar H

2
, and 30 bar CO. The 

color codes on the selectivity map are determined by weighting the various reaction channels with the selectivity for eth-
anol, methanol, and methane, respectively. points represent binding to transition metal (211) surfaces. Taken from 
Medford et al. (2014) with permission from Springer. (See insert for color representation of the figure.)
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7.5 Selectivity MApS

So far, we only discussed the activity of surfaces toward catalyzing certain reactions. 
Often, there is more than one reaction possible so that a variety of products could be 
formed. Usually, a high selectivity toward the desired product is wanted, and we will 
show here how selectivity maps can be generated from activity maps where different 
competing reactions are taken into account.

As an example, we will take the reaction of CO with H
2
. As shown earlier, one can 

generate an activity map for this reaction toward methane as the product, where the 
TOF is plotted as a function of the carbon and oxygen binding energy. Conversion of 
CO and H

2
 can, however, yield many other products, methanol and ethanol being two 

of them. In Figure 7.12a–c, we show activity maps for the conversion of CO and H
2
 

to methane, methanol, and ethanol.
note that the activity map for methane formation has two distinct maxima, 

whereas the one in Figure 7.9 only has one. The reason is that in the kinetics leading 
to Figure 7.9, only the direct formation of methane by CO dissociation and subsequent 
hydrogenation of adsorbed C and O was included in the analysis. When the synthesis 
of methanol and ethanol is included in the analysis, new pathways for forming 
methane appear. The second, lower maximum comes from the pathway where meth-
anol is first formed and the CO bond is broken subsequently. The original maximum 
found in Figure 7.9 is the dominant one.

From the activity maps, one can form a selectivity map, by calculating the 
 selectivity toward product i  as

S
R

Ri
i

j
j

=
∑

The selectivity map shown in Figure 7.12d shows for which descriptor values the dif-
ferent products dominate. Clearly, there are few values where ethanol is the preferred 
product, explaining why to date no highly selective higher alcohol  synthesis catalyst 
has been found.

ReFeRenceS

Aika K, yamaguchi J, Ozaki A. Ammonia synthesis over rhodium, iridium and platinum 
 promoted by potassium. Chem lett 1973; 2:161–164.

Medford AJ, lausche AC, Abild-pedersen F, Temel B, Schjødt nC, nørskov JK, Studt F. 
Activity and selectivity trends in synthesis gas conversion to higher alcohols. Top Catal 
2014;57:135–142.

Moses pG, Grabow lC, Fernandez eM, Hinnemann B, Topsøe H, Knudsen KG, nørskov JK. 
Trends in hydrodesulfurization catalysis based on realistic surface models. Catal. lett. 2014; 
dOI 10.1007/s10562-014-1279-4, to be published.



FURTHeR ReAdInG 113

nørskov JK, Bligaard T, Abild-pedersen F, Studt F. density functional theory in surface chem-
istry and catalysis. proc natl Acad USA 2011;108:937.

vojvodic A, Medford AJ, Studt F, Abild-pedersen F, Kahn TS, Bligaard T, nørskov JK. 
exploring the limits: a low-pressure, low-temperature Haber–Bosch process. Chem phys 
lett 2014;598:108–112.

FuRtheR ReAding

Bligaard T, nørskov JK, dahl S, Matthiesen J, Christensen CH, Sehested J. The Brønsted-
evans-polanyi relation and the volcano curve in heterogeneous catalysis. J Catal 2004; 
224:206.

linic S, Jankowiak J, Barteau MA. Selectivity driven design of bimetallic ethylene epoxida-
tion catalysts from first principles. J Catal 2004;224:489.

loffreda d, delbecq F, vigne F, Sautet p. Fast prediction of selectivity in heterogeneous catal-
ysis from extended Brønsted-evans-polanyi relations: A theoretical insight. Angew Chem 
Int ed 2009;48:8978–8980.

nørskov JK, Bligaard T, Abild-pedersen F, Studt F. density functional theory in surface 
 chemistry and catalysis. proc natl Acad Sci USA 2011;108:937.

Raybaud p, Hafner J, Kresse G, Kasztelan S, Toulhoat H. Structure, energetics, and electronic 
properties of the surface of a promoted MoS

2
 catalyst: An ab initio local density functional 

study. J Catal 2000;190:128.

Sehested J, larsen Ke, Kustov Al, Frey AM, Johannessen T, Bligaard T, Andersson Mp, 
nørskov JK, Christensen CH. discovery of technical methanation catalysts based on 
 computational screening. Top Catal 2007;45:9.



Fundamental Concepts in Heterogeneous Catalysis, First Edition. Jens K. Nørskov,  
Felix Studt, Frank Abild-Pedersen and Thomas Bligaard. 
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

The elecTronic FacTor in 
heTerogeneous caTalysis

8

In the previous chapters, we have discussed the potential energy surface on which a 
surface chemical reaction takes place from several different points of view. We have 
seen that adsorption energies and activation energies for a given reaction depend on 
the surface, how there are correlations between these energies, and how these corre-
lations determine trends in reactivity. In this chapter, we will discuss the origin of the 
surface specificity of adsorption energies and activation energies for surface reactions. 
We will begin the discussion of how the electronic structure of a surface determines 
the reactivity, and we will identify the most important electronic structure parame-
ters. We will focus mainly on transition metal catalysts. Many of the concepts are 
generalizable to other types of catalysts, though, and we will return to that toward the 
end. This chapter provides a qualitative model of electronic factors in heterogeneous 
catalysis. A more quantitative mathematical treatment will be presented in Chapter 12.

8.1 The d-Band Model oF cheMical Bonding 
aT TransiTion MeTal surFaces

We will be focusing here on understanding variations in bond energies and activation 
energies from one transition metal to the next, and we will start by studying  variations 
in the adsorption energy of atomic oxygen. The oxygen atom, [He]2s22p4, has 4 valence 
electrons in the 2p orbitals. As oxygen approaches the surface, these  adsorbate 
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electronic states will begin to interact with the electronic states of the  surface. It is 
useful to divide the electronic states of transition metal surfaces into two types: the 
sp-bands and the d-bands (see fig.  8.1). The sp-bands originate from the metal 
valence s and p atomic orbitals that interact to form broad overlapping bands. The 
valence d orbitals of transition metals are more localized than the s and p valence 
orbitals, and they therefore interact more weakly and form narrower bands close to 
the highest occupied state, the fermi level.

When the oxygen atom approaches the surface, we can consider the coupling to 
the surface electronic states in two steps. first, consider the coupling to the surface 
 sp-states. Bonding states are formed between the metal sp-states and the o 2p states 
close to the bottom of the sp-bands. since the states are well below the fermi level, they 
are occupied—the o 2p states have been filled to form adsorbed o2− (in reality, it is 
more complex since the filled states have considerable metallic character, but that is not 
important for this discussion). All transition (and simple) metals have broad sp-bands 
and will have similar bonding characteristics for the sp coupling. The charge transfer to 
the bonding o 2p states is associated with a considerable energy gain.

We now include the coupling between the renormalized (by bonding to the metal 
sp-states) o 2p and the metal d-states. As mentioned earlier, the surface d-states are 
much narrower than the sp-states, and the change in electronic structure due to the 
coupling to the o 2p states is similar to the one found between discrete states in a 
molecular system: bonding and antibonding states are formed below the renormal-
ized o 2p states and above the metal d-states (see fig. 8.1). This will give rise to 
further contributions to the bond energy, and as in molecular systems, the strength of 
the interaction will depend on the filling of the antibonding states (the bonding states 
will always be occupied). There is a subtle difference to normal molecular bonds, 
though. In a molecule, the occupancy of the antibonding states is given by the number 
of electrons in the system. At a metal surface, there are always electrons available at 
the fermi level, and the filling is given by the position of the antibonding states 
relative to this energy level.

Atomic
energy state

Renormalized
state

State after
d-coupling

Transition metal
electronic states

EFermi (eV)
E (eV)

Figure 8.1 schematic illustration of the interaction between an adsorbate valence level 
and the delocalized s-states and localized d-states of a transition metal surface.
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We note that outside a metal surface all adsorbate states that overlap in energy 
with the metal bands are broadened into resonances. This is a manifestation of the 
fact that electrons can move between the metal and the adsorbate states; the energy 
width of the state gives the residence time of the electron on the adsorbate through 
the Heisenberg uncertainty relations (see also Chapter 11). The broad antibonding 
states can be partially occupied, and hence, the bond energy can vary continuously as 
the surface electronic structure changes.

In this picture, we can write the adsorption energy in the simple form:

 
∆ ∆ ∆E E E= +sp d .  (8.1)

Here, ΔE
sp

 is the bond-energy contribution from the free electron-like sp electrons, 
and ΔE

d
 is the contribution from the extra interaction with the transition metal d elec-

trons. ΔE
sp

 contributes the most to the bond strength; hence, it is large and negative, 
whereas ΔE

d
 is a smaller contribution to the bond strength. This is the d-band model 

of adsorption.
In its simplest form, the d-band model assumes that ΔE

sp
 is independent of the 

metal. This is not a rigorous approximation, and it will, for instance, fail when metal 
particles get small enough that the energy levels do not form a continuous (on the 
scale of the metal–adsorbate coupling strength) band. figure 8.2 shows that this, for 
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Pt55

Pt13
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Energy (eV)
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Figure 8.2 Calculated s-projected density of states (dos) for a number of platinum 
 clusters in the cuboctahedron structure. The figure clearly shows the transition between a 
 continuous band structure of highly delocalized s electrons for large clusters (>2 nm) and the 
more discrete energy levels for smaller clusters. for comparison, the calculated s-projected 
dos for Pt(111) is shown as well. We note the resemblance between the dos for the Pt

309
 and 

the Pt(111) slab, suggesting that already at sizes above 2 nm, the band structure is close to con-
verge to the metallic state.
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instance, happens for very small (below 2 nm) metal particles. In the following, we 
will work under the assumption that ΔE

sp
 is constant for all transition metals, and we 

will show that in spite of the approximate nature of the model, it can describe a large 
number of trends. As mentioned earlier, a more quantitative mathematical treatment 
is given in Chapter 12.

Consider now the adsorption of atomic oxygen on a range of late transition metal 
surfaces. We will show how the simple d-band model allows us to understand the 
trends in variation of the adsorption energy. figure 8.3 shows calculated adsorption 
energy profiles as a function of the distance of an o atom above the surface of late 
transition metals. It can be observed that o binds most strongly on the metals to the 
left in the transition metal series and stronger to the 3d than to the 4d and 5d metals. 
This is in excellent agreement with experimental findings, where ru is observed to 
bind o much stronger than Pd and Ag, for instance. In addition, Au is observed to be 
very noble with a binding energy per o atom, which is less than that in the o

2
 mole-

cule. The Ag surface is just able to dissociate o
2
 exothermically, whereas Cu forms 

quite strong bonds with o.
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Figure 8.3 Calculated adsorption energies for atomic oxygen as a function of distance of 
the o atom above the surface for a range of close-packed transition metal surfaces (ordered 
according to their position in the periodic table). The highest coordination surface site was 
chosen for the adsorption in all cases. All energies are calculated relative to the energy of o

2
 

in the gas phase, shown as dotted lines in the plots.
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figure 8.4 shows the calculated metal d-projected densities of states for the same 
metal surfaces together with the o 2p-projected dos in the adsorbed state. The 
formation of bonding and antibonding p-states below and above the metal d-bands is 
clearly seen. It can also be observed how the antibonding states for o on ru are less 
filled than on rh, Pd, and Ag, explaining the trend observed in figure 8.3 that the 
bonding becomes weaker when you move from left to right in the periodic table.

We have established a picture where the variations in bond strength for o adsorp-
tion on transition metals depend on the filling of the antibonding o 2p-states. The 
filling in turn depends on the energy of the antibonding state relative to the fermi 
level. In general, this will depend on the distribution of metal d-states relative to the 
fermi level, the energy of the o 2p state (after interaction with the metal sp-states, so 
this is approximately the same for all transition metals), and the strength, V

ad
, of the 

o 2p and metal d coupling.
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Oxygen p-projected DOS
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Figure 8.4 The dos projected onto the d-states of the surface atoms for the surfaces con-
sidered in figure 8.3 (light gray). Also shown (dark gray) is the oxygen 2p-projected dos for 
o adsorbed on the same surfaces. The formation of bonding and antibonding states below and 
above the metal d-states is clearly seen. The o 2p-projected dos shows the weight of a given 
state on the o 2p state. The antibonding states that have more metal d character therefore 
appear weaker than the bonding states that are more o 2p-like for all metals except those cases 
(Ag, Au) where the d-states are as low in energy as the o 2p-like states. dashed lines indicate 
the fermi level.
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The simplest possible model includes only the d-band center to describe the 
d-band. figure  8.5 shows a compilation of values of ε

d
 − E

f
   and V

ad
   for all the 

transition metals. It can be seen that within the 3d, 4d, and 5d series, there are 
moderate and monotonic variations of V

ad
. We can therefore expect that the adsorp-

tion energy should vary monotonically with ε
d
 − E

f
. This is indeed what is seen for o 

adsorption on the 4d transition metals in figure  8.6. Both experiments and dfT 
 calculations show that the bonding becomes stronger (i.e., ΔE

ads
 becomes more neg-

ative) as we move left in the periodic table and the d-states move up in energy relative 
to the fermi level. This means that the antibonding states are also moving up in 
energy and becoming less filled, hence the stronger bonding. The same is observed 
for the 3d and 5d series (see fig. 8.4).
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Figure 8.5 Part of the periodic table, showing a number of electronic structure parame-
ters. The d-band centers are calculated for the most close-packed surfaces of the experimen-
tally predicted crystal structures fcc(111), hcp(0001), and bcc(110). The idealized d-band 
fillings are shown in the upper left corner, and a coupling matrix element relative to Cu, 
V Vad ad Cu

2 2/ / , between the adsorbate and the metal d-states is given as well. The latter is a mea-
sure for the extent of the metal d-states, and the coupling matrix element to any adsorbate state 
will be approximately proportional to this number. Adapted from ruban et al. (1997).

The d-ProjecTed densiTy oF sTaTes

The dos projected onto the d-states that interact with the adsorbate state can be 
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The second moment, or the width of the d-band, also affects the interaction energy, 
but for the late transition metals, this effect is considerably smaller than the effect of 
varying the d-band center. This is illustrated in figure 8.7. It shows the result of a 
model calculation to be described in detail in Chapter 12 of the bond energy for an 
adsorbate as a function of both the d-band center and the width. In figure 8.7, we have 
included values of the d-band widths and centers (W

d
, ε

d
) for the transition metals.

We note that the reason that the d-band center is a good descriptor of the adsorp-
tion energy variations is that it correlates well with the position of the upper d-band 
edge, which basically controls the position and filling of the antibonding states. If we 

use a slightly more advanced descriptor, ε εd
W

d d= +
1

2
W , the energy of the upper  
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describe the width and shape in more detail. A simple rectangular model for the 
d-band takes the form 
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where 10 accounts for the total number of d electrons in the band and W
d
 is the 

bandwidth. This simple assumption about the form of the d-band brings out the 
relationship between first and second moment and bandwidth and the fractional 
filling f = N

d
/10 of the band such that
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If we center the band at ε
d
, we can solve for the hybridization part of the bond 

energy, hyb
dE∆ , such that
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The bonding in solids obtained from this simple model is seen to depend on the 
degree of filling f. In fact, the binding should be maximum for a half-filled d-band. 
This dependence is exactly what is found experimentally.
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band edge, it provides an even more accurate description of the variations as can be 
seen in figure 8.8.

It is clear that the effect of varying the d-band center for a given adsorbate and a fixed 
coupling matrix element must be similar for any adsorbate with low-lying adsorbate 
states. This includes H, s, C, n, and many other atomic and molecular adsorbates.

The qualitative picture developed earlier has been verified experimentally. In figure 8.9 
we show X-ray emission and X-ray absorption experiments of n adsorption on Cu(100) 
and ni(100) surfaces, combined with dfT calculations of the same systems.

n adsorbs considerably stronger on ni than on Cu, and this clearly correlates with 
the filling of the antibonding n 2p–metal d-states. since Cu has completely filled 
d-states (i.e., the d-band is positioned well below the fermi level), the antibonding 
states on Cu are mostly filled. on ni, on the other hand, where the d-bands are pinned 
to the fermi level because of the fractional filling of the d-states, the antibonding 
o 2p–ni 3d states are partly empty, thus confirming the dependence of the n adsorption-
induced changes in the electronic structure on the metal.

0

–2

–4

–6

0

–2

–4

–4 –2 0 2

–6

Zr

Exp. (polycrystalline)

DFT-GGA

Nb MO Tc Ru Rh Pd Ag

εd (eV)

Δ
E

ad
s (

O
) 

(e
V

)

Figure 8.6 Changes in the adsorption energy of atomic oxygen along the 4d transition 
metal series. The dfT calculated results are compared to those from experiments. In the graph 
below, the same data is plotted as a function of the d-band centers taken from figure 8.5. 
Adapted from Hammer and nørskov (2000).
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We now turn to explain the variations in chemisorption energy between the 3d, 4d, 
and 5d series. To do this, we will need to include the contribution to the interaction 
energy from the Pauli repulsion, ortho

dE∆ , between the adsorbate states and the metal 
d-states. Together with the energy contribution ΔE

d − hyb
 from the formation of bonding 

and antibonding states, this makes up the total energy contribution from the coupling 
to the metal surface d electrons:

 
∆ ∆ ∆E E Ed d hyb d

ortho= +−  (8.2)

The Pauli repulsion comes from the energy associated with the orthogonalization of 
the adsorbate states to the metal states, and this term is proportional to the overlap 
between the orbitals participating in the bond.

Assuming that the overlap matrix element between the two states scales with the 
coupling matrix element, we can write the Pauli repulsion in a simple form:
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Figure 8.9 Comparison of symmetry-resolved nitrogen 2p
x,y

 and 2p
z
 from (upper) X-ray 

emission and X-ray adsorption experiments and from (lower) dfT calculations on Cu(100) 
and ni(100). Adapted from nilsson et al. (2005).



124 THe eleCTronIC fACTor In HeTerogeneous CATAlysIs

 ∆E Vd
ortho

ad≅ α | |2  (8.3)

for oxygen adsorption on Cu, Ag, and Au, we can directly observe ortho
dE∆  because 

the d-bands are so low-lying that the antibonding states formed between the 
o  atoms and the metal d-states are almost completely filled, meaning that 
ΔE

d − hyb
 ≅ 0. We observe from figure 8.5 that the coupling matrix element |V

ad
|2 

increases rapidly in going from the 3d to the 4d and 5d transition metals, and in 
figure 8.10, we show how the o adsorption energy on the coinage metals Cu, Ag, 
and Au scales well with |V

ad
|2.

In this framework, we can understand why Au is so inert with respect to oxygen. 
for the metals with low-lying, filled d-bands like the coinage metals, the oxygen 
binding will be weakest. The reason is simple; since both bonding and antibonding 
adsorbate–metal states are filled, the net effect of the interaction with the metal 
d-states is entirely repulsive. from equation (8.3), we see that the repulsive term 
scales with the strength of the coupling between the adsorbate and the metal surface 
states; therefore, since Au is the metal with the largest matrix element |V

ad
|2 of the 

metals with filled d-bands ( f = 1 in fig. 8.5), we find that Au is the metal with the 
largest Pauli repulsion and the weakest oxygen chemisorption bond, and that is why 
Ag and Cu are more reactive as seen in figure 8.10. Considering all of the f = 1 
metals included in figure 8.5, Zn should be the pure metal with the strongest oxygen 
bond, and this is, indeed, found to be the case.
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Figure 8.10 Variations in the adsorption energies of atomic oxygen (taken from fig. 8.3) 
with the size of the coupling matrix element (from fig. 8.5) for the coinage metals. Adapted 
from Hammer and nørskov (2000).
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8.2 changing The d-Band cenTer: ligand eFFecTs

for simplicity, let us consider a series of cases where the energy of the renormalized 
adsorbate state(s), ε

a
, and the coupling matrix element between these states and the metal, 

V
ad

, can be treated as essentially constant. This is possible if we limit ourselves to situa-
tions where a given adsorbate bonds to the same transition metal surface atoms in varying 
surroundings. In such cases, we would expect that the average energy of the d electrons 
relative to the fermi level, ε

a
 − ε

f
, should, to a first approximation, determine the varia-

tions in the interaction energy. In the following, we will look at different ways of varying 
the position of the d-band center through local changes in the adsorption site.

Perturbations induced by the atoms surrounding the adsorption site will result in 
local variations in the d-band center. The number of d electrons is typically affected 
less by such changes due to strong Coulomb interactions between the d electrons in 
a given transition metal. In figure 8.11, we illustrate how a change in d-band width 
of the surface atoms has to lead to a change in the d-band center to keep the number 
of d electrons constant.

one way of changing the d-band center for a given type of transition metal is by 
varying the surface structure. As the number of metal neighbors, or the coordination 
number, of the surface metal atoms changes, then the bandwidth of the d-dos also 
changes. The rule is that the higher the coordination number, the broader the band. 
When the coordination number of a surface atom is lowered, the loss in electronic 
overlap between the atoms in the vicinity creates a local d-dos distribution that is 
 narrower. The consequence of a nearly constant d-band filling is an upshift in the 
d-band center, which, according to the d-band model, results in a more reactive surface.
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Figure 8.11 A schematic illustration of the connection between d-band center for a metal 
with a more than half-filled d-shell and the  bandwidth for an electronic band with a fixed 
number of d electrons. When the bandwidth becomes narrower, the only way of maintaining 
the number of d electrons fixed is to shift up the center of the band.
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Take as an example an fcc metal like Pt. In the most close-packed surface struc-
ture of Pt, the (111) surface, the surface atoms have a coordination number of 9. for 
the more open (100) and (110) surfaces, the coordination number decreases to 8 and 
7, respectively. steps and kinks in surfaces and edges and corners on nanoparticles 
have even lower coordination numbers, from 7 to as low as 5. figure 8.12 shows how 
the adsorption energy of Co varies as expected when the d-band center changes due 
to a change in the metal coordination number of the Pt atom to which Co bonds. The 
close-packed (111) surface binds Co weaker than the step and kink Pt atoms on the 
(211) and (532) surface by more than 0.5 eV. This has been observed experimentally, 
for instance, in thermal desorption experiments, where the Co atoms associated with 
steps desorb at a temperature that is almost 100 K higher than those on the close-
packed surface sites (see the right panel in fig. 8.12).

Another way of changing the band width and hence the center of d-states is by 
straining the surface. Increasing the lattice constant decreases the overlap and 
decreases the local band width. This can be seen in figure 8.13 to give a very direct 
change in bonding to adsorbates, which again scales with the d-band center.

yet another way of changing the d-band center in a controlled way is by 
 alloying. The formation of surface alloys can induce changes in the electronic 
structure, which can be understood in terms of the d-band model given that the 
electronic structure changes are very localized and that the adsorption site remains 
unchanged.
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Figure 8.12 Left: calculated chemisorption energies for Co as a function of the average 
variation in energy of the d-states relative to Pt(111) projected onto the surface atoms to which 
the adsorbates form bonds. Adapted from Jiang et al. (2009). Right: measured thermal desorp-
tion spectra for Co on Pt(211). At low coverage, only the strong bonding step sites are occu-
pied, while at high Co coverages, the weaker bonding (111) sites are observed to desorb at ca. 
100 K lower temperature. Adapted from yates (1995).
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so-called near-surface alloys (nsAs) provide a template system for studying such 
effects. nsAs or “skins” have been extensively studied as oxygen reduction reaction 
(orr) catalysts in PeM fuel cells. If one could reduce the contents of the expensive 
elemental metal Pt by forming a stable thin layer of the metal on top of a cheap and 
abundant metal host like fe, Co, or ni and improve or maintain its high activity and 
low overpotential for orr, it would be a remarkable achievement.

By considering a Pt(111) surface where a series of different 3d metals have been 
sandwiched between the first and second layers, the effect of the subsurface layer of 
atoms on the reactivity of a Pt(111) overlayer can be studied. The overall effect of the 
intercalated 3d metals is that the d-states of the surface Pt atoms are shifted down 
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Figure 8.13 effect of strain on the adsorption energy of Co and o and the dissociation 
barrier for Co on ru(0001). Adapted from Mavrikakis et al. (1998).
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in energy as the second layer metal is chosen further to the left in the 3d series. In 
figure 8.14, o and H adsorption energies have been shown as a function changes in 
the d-band center induced by the different 3d metals sandwiched between the first 
and second surface layers. The o and H adsorption energies show the same trends: as 
the d-band center is shifted down in energy, the bond becomes weaker and weaker. 
for nsAs, the bandwidth changes due to the hybridization between the d-states of 
the Pt atoms in the surface and the electronic states in the second layer. This indirect 
interaction between the states intrinsically in the metal can also be termed a ligand 
effect—the metal ligands of the surface atoms are changed.

similar effects can be found for metal overlayers. overlayers of one metal on another 
are often found for alloy catalysts because one of the components usually  segregates to 
the surface. In such systems, the overlayer atoms have ligand effects from the second 
layer as in the nsAs, but they also have to adapt to the lattice constant of the host metals. 
Hence, we have a combination of the ligand and strain effects. figure  8.15 shows a 
systematic theoretical study of shifts in d-band centers as different late transition metals 
are deposited on host materials consisting of other late transition metals.

It can be seen in figure 8.15 that Pd overlayers on a number of metals except Au 
and Ag lead to downshifts in the d-band center and hence to weaker adsorption 
bonds. This has been explored in a set of electrochemical experiments illustrated in 
figure 8.16, showing that shifts in the d-band center induced by the underlying metal 
correlate very well with the observed change in hydrogen adsorption energy.
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8.3 enseMBle eFFecTs in adsorPTion

The cases we have discussed until now have only considered situations where the 
adsorbate has bonded to one single elemental metal. The variations in the adsorption 
strength have been induced by second-order effects, meaning that only the surround-
ings or the atoms in the vicinity of the adsorption site have changed, giving rise to an 
indirect effect on the adsorbate.

In cases where there are two kinds of metal atoms in the surface, an adsorbate will 
interact with an ensemble of surface atoms. If an adsorbate interacts with 2 A metal 
and 1 B metal atom, one would expect an adsorption energy that would be some 
average of the adsorption energy on metal A and metal B. such an interpolation prin-
ciple is found to hold approximately as illustrated in figure  8.17 showing dfT 
 calculations of the oxygen binding energy for a large number of surface alloys.

The simplest model would be to use data of pure metal surfaces alone and not 
 taking into account strain and ligand effects induced by the host material. let A

x
B

1 − x
/B 

be the model surface alloy system we want to describe. Here, B is the host material 
and A is the solute and x is the fractional amount of A in the surface layer. The adsorption 
energy of oxygen on the surface of our model system can now be approximated as

 
∆ ∆ ∆E A B B x E A A x E B Bx x1 1−( ) = ( ) + −( ) ( )/ / /  (8.4)

This gives a mean absolute error for the data set (light gray points) in figure 8.17 
of about 0.2 eV relative to the full dfT calculations.
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A more accurate interpolation scheme can be obtained from calculations of 
oxygen adsorption on systems with overlayers of metal A and metal B on the same 
host material B. This is calculated as

 
∆ ∆ ∆E A B B x E A B x E B Bx x1 1−( ) = ( ) + −( ) ( )/ / /  (8.5)

using this estimate gives typical mean absolute errors on the data set (dark gray 
points) in figure 8.17 of the order 0.1 eV relative to full dfT calculations of the 
oxygen chemisorption energy.

While the interpolation model is far from perfect, it gives a fast and easy way of 
estimating the adsorption energies for alloys based on calculations or experiments for 
simpler systems. given how simple the two models are, it is surprising how well it 
works. In fact, the d-band model can be used to elucidate why this is the case.

under the assumption that ΔE
sp

  in equation (8.1) is independent of the metal con-
sidered, all effects due to having several metal components are to be found in the 
ΔE

d − hyb
 term. for a system where an adsorbate couples to an ensemble of different 

surface metal atoms, the natural approach is to assume that the adsorption strength is 
a linear combination of contributions from each metal. We have seen earlier that 
ΔE

d − hyb
 is a function of the d-band center, and in a case where the adsorbate couples 

to several different metal atoms, then according to the arguments earlier, the d-band 
center of relevance should be an average of the d-band centers for each of the 
transition metal atoms to which the adsorbate couples:

 

ε εd ≈ =∑ ∑1
2

2 2 2

V
V V V

j
aj j

j
aj| | ; | |  (8.6)

Here, V
aj
  is the coupling matrix element between the adsorbate state and the d-states 

on surface atom j. To the extent that ΔE
d − hyb

 is a linear function of ε
d
, variations in the 

adsorption energy with varying types of surface transition metal atoms will be an 
average of the contributions from each type.

8.4 Trends in acTivaTion energies

so far, we have only focused on electronic structure effects on the chemisorption of 
intermediates on metal and metal alloy surfaces. To be able to describe the behavior 
of complete catalytic reaction, we also need information about the activation energies, 
the energy needed to jump between two intermediate steps on a potential energy sur-
face. The importance of this has been described in some detail in Chapters 6 and 7.

As discussed in the previous chapters, the activation energy, E
a
, is defined as the 

energy of the transition state, ΔE
Ts

, for a given reaction relative to the initial state, 
ΔE

Is
:

 E E Ea TS IS= −∆ ∆  (8.7)
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since the transition state energy is just the “chemisorption energy” of an activated 
 molecule, the arguments behind the d-band should also apply to the interactions in 
the transition state. It is therefore safe to assume that correlations between the d-band 
center and transition state energies exist as for chemisorption energies.

In figure 8.18, we show how the activation energy for methane dissociation on a 
number of ni-based surfaces can be correlated with the weighted d-band center 
as defined in equation (8.6). The weighted d-band center is necessary since the 
interaction between the surface and the activated methane complex is seen to have 
a significant Au component for the niAu(111) surface alloy structure for the remain-
ing structures the weight from the surrounding surface atoms is negligible and hardly 
shifts the points. In this approach, it is seen that both alloying (niAu) and structural 
effects (compare ni(111) with ni(211)) and the effect of strain are described by the 
weighted d-band center variations.

In fact, the alloying effects can be observed directly in molecular beam scattering 
experiments monitoring the methane sticking probability as a function of the Au 
 coverage on a ni(111) surface (see fig. 8.19).

structural effects can also be observed experimentally. Again, we illustrate this 
for the methane activation over ni surfaces. As expected from the d-band model, the 
ni(111) surface has a significantly higher barrier for methane dissociation compared 
to the stepped ni(211) surface (see fig. 8.18). Because sulfur preferentially adsorbs 
at the step edges on ni surfaces and since sulfur destabilizes the activated methane 
complex even more than on the ni(111) as seen in figure 8.18, one can experimen-
tally use atomic sulfur to selectively block the more active step sites.

figure 8.20 shows experimentally measured carbon uptake data during methane 
activation on a ni(14 13 13) surface that contains approximately 4% step atoms. 
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structure.  Adapted from Abild-Pedersen et al. (2005a).
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Figure 8.20 experimental data showing the carbon uptake from methane as a function of 
the sulfur coverage on a ni(14 13 13) surface. The carbon uptake is a direct measure of the 
thermal dissociation rate of methane, and it is seen to decrease significantly as s atoms cover the 
estimated 4% of steps on the ni(14 13 13) surface (see inset). Adapted from Abild-Pedersen 
et al. (2005b).
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If 2% of s is adsorbed, which corresponds to a half-covered step where all step atoms 
are blocked by having one s neighbor, the rate of methane dissociation is decreased 
substantially. This observation shows directly how the undercoordinated step-edge 
atoms are much faster at dissociating methane than the terrace atoms that are much 
more densely packed.

figure  8.18 includes an example where there is an indirect interaction bet-
ween adsorbates on the surface and the transition state complex. It is observed 
that preadsorbed carbon at varying coverages affects the dissociation barrier of 
methane significantly. This is an example where two adsorbates sharing the same 
surface atom repel each other. other examples have been shown in Chapter 2 for 
oxygen adsorption. This effect can be rationalized in the following way: the 
d-states of the metal atom to which the preadsorbed element couples will be 
modified by the interaction. In most cases, the interaction broadens the metal 
d-states, and as a consequence of the constant d filling, the states shift down in 
energy and the interaction with a  second atom or molecule will be weaker.

In figure  8.18, methane activation on a sulfur-precovered ni(211) surface is 
identified as an outlier even when the d-band center is weighted according to 
equation (8.6). The d-band model is designed to capture effects from electronic 
interactions between an adsorbate and the surface alone whether they are direct or 
indirect. However, there are additional effects due to direct interactions between 
adsorbates that cannot be described using the d-band model. sulfur is a large adsorbate 
with states that have a sizable overlap with the valence orbitals of an incoming 
molecule. This will give rise to repulsion that is larger than the repulsion originating 
from the indirect interaction through d-band shifts.

8.5 ligand eFFecTs For TransiTion MeTal oxides

In this chapter, we have concentrated only on the reactivity of transition metal surfaces 
and shown that trends in adsorption energies and activation energies from one system 
to the next can be understood in terms of variations in the local d dos, in particular the 
d-band center. We end the chapter by indicating that similar concepts can be developed 
to understand trends in reactivity for transition metal compounds. The point to realize 
is that if there is a high concentration of electronic states with energies within a few eV 
(the order of magnitude of adsorbate–surface coupling matrix  elements) of the fermi 
level, they are likely to dominate variations in reactivity because they can interact with 
the adsorbate states and form occupied bonding and unoccupied antibonding states.

Consider oxygen adsorption on transition metal oxide surfaces. The role of the 
narrow bands of metal d-states in the transition metals is now played by localized 
surface resonances and surface states, typically in the gap of semiconducting or insu-
lating transition metal oxides.

This is illustrated in figure 8.21a where we consider Tio
2
 doped with different 

transition metals. doping leads to new d-derived surface states as shown for Cr-doped 
Tio

2
 in figure 8.21b, and the adsorption energy of o atoms scales with the energy of 

these states.
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Catalyst struCture: 
Nature of the aCtive site

9

9.1 struCture of real Catalysts

Real heterogeneous catalysts are complex structures typically consisting of several 
phases. Usually, only one phase is catalytically active, but there are exceptions: for 
example, one phase may catalyze one part of the total reaction, whereas different 
phase catalyzes another or the active site is at the boundary between two phases. The 
active phase usually consists of nanosized particles or is nanostructured in some 
other way in order to have a large surface area (Fig. 9.1).

Apart from the active phase, many catalysts have a support phase, that is, a high 
surface area material onto which nanoparticles of the active phase are anchored in 
order to stabilize the high surface area. Typical supports are Al

2
O

3
, SiO

2
, or other 

materials, which can be prepared in a stable, porous form. In the example in 
Figure 1.2, the active phase, Ru nanoparticles, is anchored on a boron nitride support.

In other cases, a structural promoter is added to keep the nanoparticles of the 
active phase from sintering together and forming larger particles with a low surface 
area. In the Fe-based ammonia catalysts used in industry today, Al

2
O

3
 is added to 

stabilize the Fe particles.
Finally, there are many cases where promoters are added. Promoters are typically 

materials that spread over the active surface and enhance catalytic activity or  selectivity. 
Taking again ammonia synthesis as the example, the Fe-based catalysts are promoted 
by K

2
O, while the Ru-based catalyst shown in Figure 1.1 is promoted by BaO

x
.
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Poisons are species on the surface that decrease activity and selectivity. Much care 
is taken to avoid such species, but that is not always possible. Oxygen is, for instance, 
a severe poison to the Fe-based ammonia synthesis catalyst, and trace amounts of 
sulfur in the reactants poison a number of reactions. Sensitivity to poisoning is there-
fore an important criterion for a good catalyst.

In this chapter, we will discuss a number of aspects of the effect of catalyst 
 structure on catalytic activity, while the topic of poisoning and promotion will be 
discussed in Chapter 10. First, we will cover the variation in intrinsic catalytic 
activity of different facets and defects of a surface. Next, we will show how this 
leads to variations in activity with particle size and shape. This leads us to a close 
look at the nature of the active sites of the surface where most of the catalysis 
takes place.

9.2 iNtriNsiC struCture DepeNDeNCe

It is clear from the discussion of potential energy diagrams in Chapter 2, scaling rela-
tions in Chapter 6, electronic structure factors in Chapter 8 that adsorption energies 
and activation barriers for elementary surface reactions can depend strongly on the 
local structure of the surface where they take place. In this section, we provide a 
discussion of the possible consequences of this on the rate for a complete reaction.

There are two ways in which the surface structure of a catalyst can affect the sta-
bility of reaction intermediates and the activation energy of an elementary surface 
chemical reaction. One effect is entirely electronic and the other effect is purely 
geometrical.

figure 9.1 Illustration of length scales in heterogeneous catalysis from the meter scale of 
the reactor to the nanometer scale of the catalytic material in a nanometer-sized pore. Taken 
from Christensen and Nørskov (2008) with permission from The American Institute of Physics. 
(See insert for color representation of the figure.)
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The electronic effect is due to the surface metal atoms in different environments 
having slightly different local electronic structures. hence, they interact differently 
with reactants and intermediates as has been discussed in detail in Chapter 8.

The geometrical effect comes from the fact that different surface geometries 
 provide different configurations to the molecule for bonding. It is in general difficult 
to differentiate the two effects: steps, for instance, offer atoms with electronic struc-
tures different than close-packed surfaces and at the same time offer new surface 
atom configurations. One way to separate the two effects is by plotting the transition 
state energy for a surface chemical reaction as a function of the reaction energy for a 
range of metals and for different surface geometries, as illustrated in Figure 6.8 for 
Ch

4
 dissociation and NO dissociation.

For some reactions such as the dissociation of methane (Fig. 6.8a), essentially, the 
same scaling relation is found for different surface geometries. There can still be 
electronic step effects—observe, for instance, how the Ni(211) data point is shifted 
to the left of the Ni(111) data point. This is an example of the d-band effect discussed 
earlier. The step atoms on the (211) surface (see inset in Fig. 6.8a) have a lower metal 
coordination number and hence higher lying d-states than the Ni atoms on the close-
packed (111) surface. This leads to stronger bonding of the intermediates as well 
as  the transition states. The electronic effect thus corresponds to a displacement 
along the transition state scaling line. Experimental results illustrating the electronic 
effect are shown in Figure 9.2.
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figure 9.2 Measured carbon deposits as a function of Ch
4
 dose at 500 K on a Ni(14 13 

13) surface for two different cases: one case where the surface is “clean” (filled dots) and 
another where the step sites have been blocked by dosing 0.06 monolayers of sulfur (open cir-
cles). The rate of methane dissociation only differs by a factor of ca. 100, which corresponds 
to a difference in activation barrier of approximately 0.2 ev, in excellent agreement with the 
results in Figure 6.8a. Adapted from Abild-Pedersen et al. (2005).
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For other reactions, there are large shifts in the transition state scaling lines for 
different geometries. This is shown for NO dissociation in Figure 6.8b. Such strong 
effects are found generally for N–O, C–O, O–O, N–N, and C–C bond scission. It is 
found that open surfaces and in particular some kinds of steps have particularly low-
lying transition state scaling lines. Experimental results illustrating this effect are 
shown in Figures 9.3 and 9.4.

We will call these cases, where transition state scaling lines for a certain elementary 
reaction for different surface geometries differ strongly compared to the electronic 
effect, as intrinsically structure dependent. The idea is that variations along each of 
the transition state scaling lines reflect electronic effects as discussed earlier. In this 
way, we have separated these from the geometrical effects. We can quantify the struc-
ture dependence in the following way. If we write the activation energy in terms of 
the reaction energy in the usual way (Eq. 6.5) as E

a
 = γ ΔE + ξ, then strong structure 

dependence means that the variation δ ξ in ξ from one structure to the next is stronger 
than the corresponding variation in the adsorption energy: δ ξ > δ (ΔE). Weak struc-
ture dependence is characterized by δ ξ < δ (ΔE).

The geometry dependence of the transition state scaling lines transforms directly 
into the geometry dependence of the reaction rates, but not in a completely straight-
forward way. It is not necessarily the case that a lower activation barrier is the same 
as a higher rate. We will make the analysis for the simple generic reaction used in 
Chapters 5 and 7 where a single adsorption energy can be used as a descriptor and 
where there are only two elementary steps to consider. The following discussion is 
easily generalized to the case with more elementary steps.

Figure 9.5 suggests a classification of structure dependence of catalytic reactions. 
In the figure, we show transition state scaling lines for activation energies and the 
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figure 9.3 The experimentally determined carbon coverage on a Ni(14 13 13) single 
crystal as a function of the CO exposure at 500 K. Results are shown for both the clean surface 
and for a surface that has been preexposed to 0.05 monolayers of sulfur, which is known to 
preferentially block the steps. The surface is incapable of dissociating the CO when the steps 
are blocked. Adapted from Andersson et al. (2008).
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corresponding Sabatier volcanoes. For two possible rate-determining elementary 
steps, there are four possibilities depending on whether either elementary reaction 
shows strong structural effects or not, according to the previous definition. We con-
sider in the following two different local geometries, defining the extremes in the 
structure dependence of the elementary reactions. The structure with the lowest 
transition state scaling line (shown red in the figure) could be thought of as belonging 
to a steplike defect, while the other could represent a close-packed surface.

In Figure 9.5, the arrows indicate what happens to the rate over a given metal 
when going from a close-packed surface site to a step site where the adsorption 
energy is more exothermic. The figure suggests a set of rules for determining the 
nature of the active site. For metals on the right leg of the volcano (noble metals), 
the steps are always the most active. For the more reactive metals on the left leg, it 
depends on the degree of structure sensitivity of the elementary step. For Case 3 
and Case 4 in Figure 9.5, the site that binds the intermediates most strongly has 
the lowest rate. This is what one would expect since on the left leg of the volcano, 
the rate-limiting step is the removal of the adsorbed intermediates. here, the most 
reactive sites (in the sense of strongest bonding of surface intermediates) are self-
poisoned by the reaction and do not contribute significantly to the catalytic rate. 
Case 1 and Case 2 in Figure 9.5 are exceptions to this rule. here, the strongest 
bonding sites dominate because the reaction barrier is affected more than the 
reaction energy.
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genation) rates as a function of step and kink density on Pt surfaces. The much stronger 
 structure dependence of the hydrogenolysis that involves C–C bond formation is clearly seen. 
Adapted from Blakely and Somorjai (1976).
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9.3 the aCtive site iN high surfaCe area Catalysts

The structure sensitivity of the reactivity of different facets translates directly into a 
dependence of the rate and selectivity of supported catalysts on the particle size, 
 morphology, and defect density.

Consider the case where there are two different facets, or possible active sites, m 
and n, on a nanoparticle catalyst. Assume for simplicity that the rate at each site can 

be written in an Arrhenius form, r e
E

k T=
−

ν
a

B . If the two sites have areas A
m
 and A

n
 and 

activation energies Em
a  and En

a , and we assume that the prefactor, ν, is the same for the 
two sites, then relative contributions of two sites are given by
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This shows that in order to compare the relative importance of different sites, we 
should compare the geometry probability-weighted activation energies:

 
E E k T Ai i

ia a B= − ln ( )  (9.2)

If one of these is smaller than the rest (on the scale of k
B
T), this site will dominate 

the reaction, and the corresponding structure will appear to be the active site. 
Identifying the active site is critical to understanding how to improve a catalyst. It is 
only if you know the structure and composition of the active site that you can 
start thinking about how to make it more suited for a reaction. In the following, we 
will consider examples of elementary reactions where it is possible to identify a 
 well- defined active site.

The particle size dependence is a rough measure of the structure dependence. 
A convenient measure of the particle size dependence is the relative dependence of 
the rate per exposed surface area, r, on the particle diameter, d:

 

α = −
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( )( )

= −
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d d

d

r
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ln

ln
 (9.3)

If all surface sites contribute the same to the rate, then α = 0, meaning that the  reaction 
is structure insensitive. A value larger than zero indicates that the active site is of a 
lower dimensionality than the surface, that is, consists of steps, edges, corners, or 
kinks. The values of α thus define a degree of structure sensitivity.

Using Equations (9.1) and (9.3), we can write the degree of structure sensitivity in 
terms of the contributions for different surface geometries as
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where α
i
 is a measure of the dimensionality of the sites of type i (α

i
 = 2 − N

dimensions
). 

Steps and edges (which are one-dimensional) of a particle have α
i
 = 1, whereas 

 corners and kinks (which are point defects and therefore zero-dimensional) have 
α

i
 = 2. If there were a single, well-defined active site, we would expect an integer 

value of α. A noninteger value would indicate that several sites contribute. It 
could also be a consequence of inhomogeneity in the real catalyst. Figure 9.6 
shows experimental data for the methanation reaction. here, CO dissociation 
is a necessary step in the reaction and as discussed earlier a strongly structure-
dependent one. The data in Figure 9.6 indicate that both edges and corners of 
the metallic nanoparticles  contribute to the rate, since the observed α is between 
one and two.

A number of other reactions belong to the same class of strongly structure-dependent 
reactions. Ammonia synthesis is a good example. As discussed in Chapters 6 and 7, and 
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expected from discussion of Figure 9.5, ammonia synthesis shows strong structure 
sensitivity. Another example is shown in Figure 9.7 where hydrodesulfurization (hDS) 
activity is plotted as a function of the Co edge atoms of a Co–Mo–S catalyst. It can be 
clearly seen that activity scales with the number of Co edge atoms, which in turn are 
thus identified as the active site of the Co–Mo–S catalyst.
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9.4 support aND struCtural promoter effeCts

The support (or structural promoter) can have several effects apart from keeping the 
nanoparticles of the active component from sintering. First of all, the interaction between 
the active phase and the support determines the shape of the catalyst particle, as can be 
seen in Figure 9.8. A weak interaction means that the nanoparticle will have a form that 
is essentially unperturbed by the support. Such an example is also shown in Figure 1.1. 
If the interaction is stronger, the interface area will tend to be larger to gain more of the 
interaction energy, and a truncated particle shape results. An example is shown in 
Figure 9.9 for palladium nanoparticles that have been grown on an alumina film.

A structural promoter can also affect the surface structure by introducing bulk 
defects that anchor surface defects such as steps that have a high activity. This is, for 
instance, the case in the industrial methanol synthesis catalyst. The catalyst is based on 
Cu nanoparticles, and the steps are found to be the most active for synthesis (Fig. 9.10).

The support determines the particle size by controlling the degree to which the 
individual particles aggregate to form larger particles. In that way, the support indi-
rectly affects the activity as discussed earlier.

The support can also be a direct participant in the reaction. This can happen in 
three ways:

1. The support may have a catalytic activity of its own, such that it will transform 
one or more of the products at the other active phase into a new product. 

γ/γ0=1 γ/γ0= 0.5

γ/γ0= –0.5 γ/γ0= –1

figure 9.8 Geometries for a supported nanoparticle for different values of the ratio of γ, 
the interface free energy minus the surface free energy of the support, and γ

0
, the surface 

energy of the active phase 
γ
γ 0









. The value of γ determines the change in energy of the system 

per interface area, while γ
0
 determines the change in energy per surface area of the active 

phase. γ = γ
0
 means that the surface of the particle is unaffected by the presence of the support, 

while γ = − γ
0
 means that the active phase will spread completely over the surface of the 

support, thus forming a single layer. Adapted from Clausen et al. (1994).
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This, for instance, happens with methanol synthesis, where some supports with 
acid–base catalytic activity may transform the methanol produced over a Cu 
catalyst into dimethyl ether.

2. The support can participate at the interface. The interface sites can have 
chemical properties that are different from those of both phases. This may be 
one of the reasons gold particles supported on TiO

2
 have catalytic properties 

different from those of bulk (unsupported) gold.

figure 9.9 (a) Image of Pd nanoparticles nucleated at steps and domain boundaries of an 
alumina film grown on NiAl(000). (b) Atomic resolution images of crystalline Pd nanoparti-
cles. The resolution is kept a few layers down the sides, allowing identification of the side 
facets. The dots indicate atomic positions consistent with a (111) facet. (c) Schematic repre-
sentation of a crystalline truncated cuboctahedron of Pd on an oxide surface. The various 
potential adsorption sites are indicated by coloring in different gray-scales. Adapted from 
Freund (2008).

(a) (b)

(c)
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3. The support may migrate onto the active phase and alter the properties there. 
Such an effect, also known as strong metal–support interactions (SMSI), can 
change the activity in several ways. The support may act as a promoter, as will 
be discussed later. The support may also block certain sites on the active phase 
and in that way induce changes in the activity or selectivity. We have, for 
 instance, seen that C–C bond breaking and formation are more affected by the 
presence of steps than C–h bond breaking and formation. If the support 
 preferentially migrates to the steps, this would change the selectivity between 
dehydrogenation and hydrogenolysis, for instance.
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Poisoning and Promotion 
of Catalysts

10

We have already discussed how the support may migrate to the surface of the 
active phase and affect its reactivity. This is part of a general set of phenomena 
called promotion and poisoning of the catalyst, depending on whether the 
selectivity or rate goes up or down or whether the substance is added deliberately 
or not.

One famous example of a promoter is the effect that alkali metals have on 
Fe-based ammonia synthesis catalysts. Figures 10.1 and 10.2 show the effect on 
the rate of dissociation of N

2
 and on the total rate. Clearly, part of the effect of add-

ing potassium to the surface is to increase the rate of the rate-limiting step: N
2
 

dissociation.
The promoting effect of alkali atoms on the dissociation rate for N

2
 is also clearly 

reflected in the potential energy diagram for N
2
 dissociation, as depicted in 

Figure 10.3. Coadsorbed alkali atoms lower the activation barrier for dissociation 
substantially. The reason is quite simple. The very electropositive alkali atoms donate 
electrons to the surface, hence becoming partially positive. The alkali-induced 
increase in positive charge outside the surface and corresponding negative charge in 
the surface sets up an electrostatic field outside the surface (see Fig. 10.4). This field 
interacts with the dipole moment of the N

2
 molecule in the transition state. Since the 

molecule is slightly negative (due to transfer of electrons into the antibonding 2π* N
2
 

state), the interaction between the induced field and the molecular dipole becomes 
attractive.
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The interaction energy between an adsorbate and an electrical field ε   can be 
written as

 
∆E = − +…µε αε

1

2
2  (10.1)

where μ  is the dipole moment of the adsorbate and α  is the polarizability.
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figure 10.1 measured probability of N
2
 dissociation on a Fe(111) surface as a function of 

the  coverage of K atoms on the surface. adapted from Ertl et al. (1982).
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in fact, in the ammonia synthesis reaction, there is an additional promoting effect due 
to the addition of an alkali (see Fig. 7.7). intermediate NH

x
 species formed during the 

ammonia synthesis reaction are destabilized at the surface. The H atoms tend to be slightly 
positive, and hence, the molecular dipole moment has the opposite sign. This gives 
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figure 10.5 difference of the turnover frequency of ammonia synthesis between promoted 
and unpromoted transition metal catalysts as a function of the nitrogen adsorption energy. The 
difference is based on the volcanoes shown in Figure 7.8. The promotional effect is most pro-
nounced for metals having an intermediate nitrogen binding energy as two effects take place 
(decrease of the N-N splitting barrier and destabilization of adsorbed NH*). Note that the plot does 
not take into account that the number of catalytically active sites does decrease upon promotion as 
the promoter is blocking some available sites. The experimentally observed difference will hence 
be somewhat less pronounced. adapted from Vojvodic et al. (2014). See also dahl et al. (2001).
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rise to a repulsion between the NH
x
 and alkali atoms, which lowers the coverage of 

the latter and hence frees up more sites for N
2
 dissociation. Both effects work together 

to increase the rate, as shown in Figure 10.5. Note that in reality the alkali atoms are 
bound to O or N atoms on the surface, but the effect is still electrostatic because, if 
anything, the O and N atoms increase the charge transfer from the alkali atoms.

if, instead of a promoter, you add an atom or molecule to the surface that interacts 
repulsively with the transition state of a rate-limiting step, thus increasing the 
activation barrier and decreasing the rate, such an additive is called a poison. in 
Figure 10.3, it can be seen that S atoms poison the N

2
  dissociation process, which 

occurs mainly because S atoms shift the d states of ru down in energy.
The degree of poisoning becomes particularly problematic if a process is strongly 

structure dependent and the poison is attracted to the most active phase. Often, steps 
are the active sites, and S atoms are strongly attracted to these sites. in that case, a 
few percent of S atoms on the surface can completely poison a reaction. an example 
is shown in Figure 10.6.
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Surface electrocatalySiS

11

In this chapter, we will consider electrocatalytic processes. It is not the intention to 
provide a complete description of surface electrocatalysis but rather to show how 
catalytic processes at electrode surfaces can be understood in much the same terms 
as other surface-catalyzed chemical processes. In particular, we will show that free 
energy diagrams, scaling relations, and activity maps are tools that are just as useful 
to analyze trends in electrocatalytic processes as for other heterogeneous catalytic 
processes.

We note that electrocatalysis and photocatalysis are often closely related phe-
nomena. Figure 11.1 illustrates the working principles of a photocatalytic device for 
water splitting based on a semiconductor, which can absorb sunlight, and two elec-
trocatalysts (one or both of which could in principle be the same material as the 
semiconductor). One of the catalysts uses the excited electrons in the conduction 
band to form molecular hydrogen:

 
2 2e H H− ++( ) →  (R11.1)

while the other enables the holes in the valence band to split water to form molecular 
oxygen and protons:

 4 2 42 2h H O O H+ ++ → +  (R11.2a)

or, equivalently,
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2 42 2H O O e H→ + +( )− +  (R11.2b)

Finding good electrocatalysts is therefore one of the core challenges in solar fuel 
production.

Before getting to the description of trends in electrocatalytic activity, we will 
 discuss the features of surface electrocatalysis that are different from ordinary gas-
phase heterogeneous catalysis.

11.1 the electrified Solid–electrolyte interface

In the following, we will concentrate on water as the electrolyte, but most of what we 
will be discussing can be generalized to other electrolytes. We will also focus on 
processes involving proton transfer. the reason is that most of the processes of 
interest in energy transformations are associated with proton transfers to or from the 
surface. again, the majority of what will be discussed is easily transferable to other 
types of processes.

Figure 11.2 shows a schematic illustration of an electrochemical cell. the potential 
difference between the anode and the cathode gives rise to a variation in the electrostatic 
potential through the cell. Since the electrolyte is conducting, there is no electrical field 
there and the potential is constant. the potential variation happens in the so-called 
dipole layer close to the two electrodes and sets up strong electrical fields there. the 
field is set up by the electrons in the electrode (or holes for a positive electrode) and the 
counterions in the electrolyte—the total charge in the surface and in the screening layer 
in the electrolyte is the same (otherwise, there would be a field in the electrolyte).

Hydrogen evolution
catalyst

Conduction band

Valence band

Band gap

Semiconductor
nanoparticle

e– 2e–

2H+

4h+

4H++O2

2H2O h+

H2

Oxygen evolution
catalyst

figure 11.1 Illustration of the function of a semiconductor-based solar water splitting 
device.
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Figure  11.3 shows the result of a detailed atomistic calculation for a Pt(111) 
 surface at a negative potential such that the concentration of electrons in the surface 
and protons in the immediate vicinity is 1 per 6 Pt atoms. It can be seen that the width 
of the dipole layer is only a few Å—the protons tend to reside in the first water layer. 
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figure 11.2 Illustration of the variation in electrostatic potential in an electrochemical 
cell. Since the potential becomes constant in the electrolyte, one can treat the two electrodes 
independently.
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figure 11.3 the electrostatic potential (as seen by an electron) outside a charged Pt(111) 
slab with three water bilayers outside and one solvated hydronium ion (yellow) per unit cell 
corresponding to a potential of ca. −2 V versus reversible hydrogen electrode (RHe). the 
electrostatic potential due to the charged interface is averaged parallel to the surface and is cal-
culated from a time average of a density functional theory (DFt) molecular dynamics simula-
tion of a proton solvated in three water layers obtained after equilibration of the system at 
300 K. adapted from Rossmeisl et al. (2008b). (See insert for color representation of the figure.)
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the potential is highly inhomogeneous parallel to the surface. this is illustrated by 
the charge density plots in Figure 11.4.

11.2 electron tranSfer ProceSSeS at SurfaceS

elementary surface reactions at an electrode involve electron transfer processes. take 
as an example the last step in the formation of water in the oxygen reduction reaction 
(ORR) (or, in the reverse direction, the first step in the water splitting reaction):

 * ( ) ( ) ( ) *OH H aq e U H O aq+ + → ++ −
2

 (R11.3)

the asterisk, *, signifies an adsorption site on the surface, (aq) a species solvated in 
the aqueous electrolyte, and (u) an electron at a potential u in the electrode.

Below, we will discuss five important ways in which elementary surface electro-
chemical reactions may differ from their gas–surface counterparts:

1. the chemical potential of the electrons entering the reaction is controlled by the 
potential of the electrode. this is by far the largest effect. changing the potential 
by 1 V changes the reaction free energy of a reaction like R11.3 by 1 eV. this 
could only be achieved in the equivalent gas-phase reaction using gas-phase 
hydrogen by changing the pressure of H

2
 by ca. 34 orders of  magnitude at 300 K.

2. the surface species, as well as the reactants and products, will be solvated by the 
electrolyte. Reactant and product solvation in the bulk electrolyte are the same as 

figure 11.4 (a) top view and (b) side view of a solvated protons in three water layers on 
top of a Pt(111) electrode. the blue isosurfaces are regions of positive charge around the 
proton solvated in the water. the purple isosurfaces on the Pt surface are regions of negative 
charge at the electrode surface. In this case, the proton concentration is very high (one proton 
per six surface atoms corresponding to a potential of ca. −2 V vs. RHe). taken from Skulason 
et al. (2010) with permission from the american chemical Society. (See insert for color rep-
resentation of the figure.)

(a) (b)
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is in ordinary liquid-phase chemistry. Solvation effects are large and many of 
them have been studied and tabulated. Solvation effects of species adsorbed on 
the surface are generally smaller than in the bulk of the electrolyte, since the 
water only has access to part of the adsorbed molecule and the geometry is 
strongly restricted by the surface and the bonding of the adsorbate to it. Some of 
the strongest effects are related to hydrogen bonding of adsorbed *OH groups. 
adsorbed *OH on a Pt(111) surface is stabilized on the order of 0.5 eV by the 
surrounding water. this is due to a very strong hydrogen bonding network, 
which is formed by a structure with one-third coverage of OH and one-third cov-
erage of H

2
O, shown in Figure 11.5. atomic adsorbates such as O or H that are 

bound close to the surface show much smaller effects, typically less than 0.1 eV.

3. Solvation events can contribute to activation free energies during transfer of 
molecules or ions to or from the surface. Since the solvent molecules at the 
surface are constrained by the presence of the surface, they respond slowly 
to perturbations, and the processes need not be adiabatic with respect to the 
solvent degrees of freedom. this could result in “apparent” activation free 
energies that are larger than the ones you would get if the solvent could relax 
completely during the process.

4. the electric field at the solid–electrolyte interface will change the adsorp-
tion energy. as discussed in chapter 10, the interaction between an electric 
field and an adsorbate can be expanded in powers of the electric field. the 
linear term has a coefficient given by the dipole moment of the adsorbed state, 
and the second-order term has a strength given by the polarizability. this is 
illustrated for intermediates of the water splitting (and the reverse oxygen 
reduction) reaction and for adsorbed cO

2
 in Figure  11.6. as shown in 

Figure  11.1, field strengths outside the surface can be quite high, easily 
several times 0.1 V/Å. even so, the effect on the interaction energy with the 
surface for both adsorbed states and transition states is modest. exceptions 
will include adsorbates with very large dipole moments, such as large 
 molecules with a redox center far from the surface or molecules with a very 
large polarizability. the latter is illustrated by the adsorption of cO

2
,  

2.66Å
3.16Å

&
Pt atom O atom H atom

figure 11.5 Structure of coadsorbed water and OH on Pt(111), determined by low-energy 
electron diffraction (leeD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spec-
troscopy (XaS), and auger electron spectroscopy (aeS), in combination with DFt calcula-
tions. From Schiros et al. (2007).
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where positive fields (negatively charged  surfaces) result in the formation 
of a cO

2
−-like state outside the surface.

Note that since the electric field outside of a surface is far from uniform (see 
Fig. 11.4), the electric field effect is not simply proportional to the potential. at 
potentials low enough, the perturbed regions do not overlap. adsorbates and 
processes in the vicinity of an ion outside the surface will be perturbed in much 
the same way, irrespective of the overall potential. a different potential then 
primarily means that there are more ions close to the surface and a larger 
fraction of the surface is perturbed.

5. the electron transfer itself can be rate limiting. this is often the case in elec-
tron transfer processes in solution, but for processes taking place close to metal 
surfaces, the electron transfer rate is usually very high and not rate limiting. 
For example, in Figure  8.4, the width, ∆, of the adsorbate-induced states 
outside metal surfaces is of the order of eV. through the Heisenberg uncer-
tainty principle, Δ τ > ℏ/2, we get that the lifetime, τ, of electrons on the adsor-
bate is of the order of 10−15 s or, equivalently, that the rate of electron jumps, 
1/τ, between the surface and the adsorbate is ~1015 s−1. the charge transfer to 
completely occupy the bonding states between the oxygen 2p states and the 
metal states (formally making it an adsorbed screened O2− ion) is therefore 
instantaneous on the timescale of the proton transfer.

One could imagine processes where the charge transfer happens further from 
the surface (e.g., to a large molecule where the redox center is buried deeply), 
where charge transfer rates may have to be considered. a case where charge 
transfer will definitely have to be taken into account is when the catalyst is an 
insulator; here, electrons need to tunnel (or hop via defects) through the bandgap 
from the underlying electrode to the surface. When the electrons (or holes) are 
created inside the insulator through photon absorption, transport occurs not 
through tunneling, but through conduction in the bands or the hopping of 
polarons (localized electrons and holes perturbing the lattice of the insulator). In 
addition, the rate may be limited by recombination of electrons and holes.
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Pt(111) surface. left: intermediates in the water splitting reaction and ORR. Right: adsorbed 
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11.3 the hydrogen electrode

Before discussing the energy diagrams for electrochemical surface reactions, we 
introduce a very useful concept from electrochemistry, the normal hydrogen elec-
trode (NHe) and the related RHe. the convention is to use the equilibrium between 
protons and electrons at a given potential with gas-phase H

2
 to define a reference 

potential so that at U = 0 V with respect to the NHe, the following reaction is in 
equilibrium at standard conditions (p = 1 bar, T = 298.15 K, pH = 0):

 
H aq e H+ −+( ) ( )U �

1

2 2  (R11.4)

the RHe defines the equilibrium potential of R11.4 to be 0 at any pH. It differs from 
the NHe scale by the free energy difference between pH = 0 and any pH:

 
e kT c e kT− −

+ = −1 1 2 30ln .
H

pH
 

the hydrogen electrode provides a direct link between the free energies in gas-phase 
adsorption and those relevant in electrochemistry.

the reaction free energy for R11.3, for instance, becomes

 
∆ ∆G U G eU GRHE g RHE interface( ) = + +  (11.1)

at potential U
RHe

 versus RHe. Here, ΔG
g
 is the free energy difference of the equivalent 

gas-phase reaction (* OH + ½ H
2
 → H

2
O(aq) + *)

 
∆ ∆ ∆ ∆G G TS E T S TSg ads

conf
ads
conf= ° − = − −0  (11.2)

at standard conditions (see chapter 3), ΔE is the energy difference (including zero-
point energy contributions), and Sads

conf  is the usual configurational entropy of the 
adsorbed state (eq. 3.25). G

interface
, is the energy difference between adsorbed OH 

at the gas–solid and the electrolyte–solid interface due to solvent and field effects 
(points 2 and 4 in the earlier discussion). In the following, we will skip the RHe 
subscript unless explicitly needed. this relationship can be generalized for any 
elementary reaction step involving a single electron and proton transfer and, indeed, 
to any reaction involving a coupled electron–ion transfer.

11.4 adSorPtion equilibria at the electrified  
Surface–electrolyte interface

Surface electrochemistry has a direct analogy to the adsorption isotherm in surface 
chemistry. In surface chemistry, the chemical potential is varied with pressure, while 
in electrochemistry, the chemical potential can also be varied through potential, 
which provides a much more powerful handle. Figure 11.7 shows the coverage of 
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OH as a function of potential versus RHe for two different surfaces, Pt(111) and 
Pt

3
Ni(111). the adsorption reaction is R11.3, and the equilibrium condition is

 
∆G U, OHθ( ) = 0,

 

which determines the OH coverage versus potential. the experimental data are 
 compared to a simple model based on the calculated adsorption energy of OH (in 
the presence of water, ~−0.8 eV relative to H

2
O and H

2,
 up to a coverage of 1/3) 

on Pt(111), using equation (a.3.3.5) to evaluate the configurational entropy. Data 
for a Pt overlayer on Pt

3
Ni are included, and it is seen that the onset of dissociation 

of water is shifted due to a weaker surface–OH bond on Pt
3
Ni. It illustrates that 

the shifts in adsorption energy associated with d-band shifts (see e.g. Fig. 8.18) are 
equally important for electrochemistry.

11.5 activation energieS in Surface electron 
tranSfer reactionS

For elementary processes involving charge transfer at the surface, one can define a 
potential energy diagram for the process completely as for other surface processes. 
Since the energy of the electron entering is now potential-dependent, it means that 
the potential energy diagram becomes potential-dependent.

consider again the elementary reaction in R11.3. Figure 11.8 shows a calculated 
potential energy diagram at three different potentials for the proton transfer from the 
water layer to an adsorbed OH group on the surface.
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figure 11.7 experimental (open circles/dashed line) and calculated (full line) coverage of 
OH versus potential (vs. RHe) for water splitting over Pt(111) (light gray) and Pt

3
Ni (black). 

experimental data are from Stamenkovic et al. (2007), and the theoretical data are from 
Rossmeisl et al. (2008a). adapted from Rossmeisl et al. (2008a).
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a noticeable feature of Figure  11.8 is that the activation barrier is always 
small; the maximum is of the order of 0.25 eV. this is comparable to proton 
transfer activation energies in water, suggesting that the proton transfer process 
to an adsorbed OH is not so different from those encountered in proton hopping 
in water.

Figure  11.8 illustrates an important property of proton transfer reactions at a 
 surface. there is a monotonic relationship between the activation energy and the 
reaction energy. this is just another example of an activation (or transition state) 
energy scaling relation, which we have already encountered for other surface 
reactions in chapter  6. the transition state energy scales not only with surface 
binding energies but also with electrode potential. Such relationships are used exten-
sively in electrochemistry. using the nomenclature from equation (6.5),

 E Ea = +γ ξ∆ ,  (11.3)

where the slope, γ, is called the transfer coefficient and a value of 0.5 is often used. 
Figure 11.8 shows an example where this is actually the case.

as would be expected, the usual scaling relations found in gas-phase adsorption 
are also found at the solid–liquid interface. Figure 11.9a shows that the scaling line 
may shift due to solvation of the adsorbates by water, while Figure 11.9b and c shows 
that similar scaling relations exist for oxide surfaces.
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sents a fit to the data showing a transfer coefficient (γ   in eq. 6.5) of 0.5. adapted from 
tripkovic et al. (2010). (See insert for color representation of the figure.)
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11.6 the Potential dePendence of the rate

equation (11.3) has important consequences. Since the reaction energy, ΔE, for a 
 reaction like R11.1 must depend on the potential as

 ∆ ∆ ∆E E U eU E eU= =( ) + = +0 0 ,  (11.4)

the activation energy depends on the potential as

 
E U eU E eU Ea a( ) = + +( ) = +γ γ ξ γ∆ 0 0  (11.5)
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If we neglect variations in the coverage of intermediates with potential (we will 
return to this question in the following text), the rate of this elementary step will vary 
with potential as

 r U e AeE U kT eU kTa( ) ,( )/= =− −υ γ /  (11.6)

which is the tafel equation. a plot of the logarithm of the rate versus U should 
 therefore give a linear plot—the tafel plot—with slope γ.

Figure  11.10 includes an experimental tafel plot for the ORR (O
2
 + 4(e− + H+)  

→ 2H
2
O). the tafel slope in the experimental data suggests a transfer coefficient of ca. 1. 

Had the water formation step, R11.3, been solely responsible for the rate of the full reac-
tion at the potentials of the experiment, it would have been 0.5, according to Figure 11.8.

the transfer coefficient can be understood from the full free energy diagram for 
oxygen reduction, shown in Figure 11.11. the highest transition state free energies are 
associated with the activation of O

2
 on the surface. the rate of this step is given by

 
r k x= ads O2

θ*  

where k
ads

 is a rate constant and xO2
 is the concentration of oxygen molecules in 

 solution. Figure 11.7 shows that in the potential region 0.8–1 V, the surface is mainly 
covered by *OH, and θ

*
 ≃ 1 − θ

OH
. the transfer coefficient of 1 comes from the fact 

that for low values of θ
*
 we have

 θ*

/ /� e e
G kT eU kT− −→ ∝∆ OH H O2
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k
ads

 is, to a first approximation, independent of the potential, since it is mainly related 
to rearrangement of the water outside the surface during adsorption, and an effective 
transfer coefficient of 1 for the full reaction results.

Figure 11.12 shows the calculated polarization curve (current density vs. poten-
tial) and the tafel plot based on the potential energy diagram in Figure 11.11 to be 
compared to the experimental data in Figure 11.10.
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figure 11.11 calculated free energy diagram for the full ORR over a Pt(111) surface at 
U = 0.9 V. the different elementary reaction steps included are as follows, in order from left to 
right: diffusion of O

2
 from the bulk electrolyte to the region (double layer) just outside the sur-

face (the effective free energy barrier shown is deduced from the diffusion rate); adsorption of 
O

2
 (note that this involves electron transfer to the O

2
 molecule, but not a whole electron, and the 

electron transfer is there also in the absence of the potential since a metal surface has a large 
pool of electrons available at the Fermi level), followed by four coupled electron–proton trans-
fers to form water; and recreation of the adsorption site *a. adapted from Hansen et al. (2014).
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11.7 the overPotential in electrocatalytic ProceSSeS

Free energy diagrams for full electrocatalytic reactions, like in Figure 11.11, are as 
useful in understanding surface electrocatalysis as those introduced for heteroge-
neous catalysis in chapter 3. Since energy barriers are quite small for proton transfer 
reactions and since the barrier scales with the reaction energy (as illustrated in 
Fig. 11.8), it is often useful to consider simplified free energy diagrams where only 
the energies of intermediates are included. the potential dependence of the reaction 
is easily seen by showing the variation of the free energy diagram with potential. 
Figure 11.13 shows such plot for the oxygen evolution reaction (OeR) and, in the 
reverse direction, ORR.

experimental data for the variation of the rate of the OeR and ORR with potential 
for a number of materials are shown in Figure 11.14. For all the electrocatalysts, the 
OeR does not start to have an appreciable current density j until a substantial 
overpotential

 
η j U j U( ) = ( ) − eq  (11.7)
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potential of 2.55 V is needed for OeR to be all downhill on Pt(111). at potentials above ca. 
0.9 V, Pt(111) oxidizes so the calculation for a metallic Pt(111) surface is purely hypothetical 
and to illustrate the principle. adapted from Rossmeisl et al. (2005).
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is applied. typically, the best OeR (RuO
2
 and IrO

2
) and ORR (Pt) catalysts only give 

current densities above |j| = 5 ma/cm2 at potentials that are |η| ~ 0.3 V above or below 
the equilibrium potential, U

eq
 = 1.23 V.

In Figure  11.13, the energy of each intermediate varies with the potential, as 
shown in equation (11.4). the ORR over Pt is only downhill in free energy for poten-
tials above ~0.8 V, ca. 0.4 V below U

eq
. the OeR is only exergonic for all reaction 

steps at a potential of 2.55 V. While the former is in good agreement with the  measured 
overpotential at current densities of the order of 5 ma/cm2, the latter is much higher 
than measured. the reason is that under the high potentials needed for OeR, Pt is 
oxidized, and PtO

2
 has a considerably lower overpotential (a similar calculation on 

PtO
2
 gives a value of 1.7 V, close to the experimental result in Fig. 11.14).

the previous examples can be generalized as follows. according to equation 
(R11.4), we can write the free energy change for any elementary step, i, in an 
 electrochemical reaction with a transfer of one electron and a proton as

 
∆ ∆G U G eUi i( ) = ±0, ,  (11.8)

where the sign of the last term depends on whether the electron transfer is from or to 
the surface. If the ion transferred is not a proton, a similar expression can be obtained 
with a potential reference given by the chemical potential of this ion in the system.
We can now define the limiting potential for elementary reaction step i as the poten-
tial where the free energy difference for the reaction is zero:

 
U

G

eL i
i

,
,=

∆ 0  (11.9)
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consider a reduction reaction like the ORR, where electrons are transferred from the 
surface to the reactant (this corresponds to a + sign in equation (11.8) and a − sign in 
equation (11.9)). the minimum of the U

L,i
s for the elementary steps making up the 

reaction defines the potential where all steps are exergonic, and this potential is 
termed the limiting potential for the reaction

 
U UL L i, ,minred = { }  (11.10)

We define the theoretical overpotential as

 
ηtheo eq, red , red= −U UL  (11.11)

likewise, for an oxidation reaction like the OeR, the maximum value of U
L,i

 for 
which all reaction steps are exergonic will define the limiting potential for the full 
reaction:

 
U UL L i, ,maxox = { }  (11.12)

and we define the theoretical overpotential as

 
ηtheo eq,ox ,ox= −U UL  (11.13)

Note that this is not the same as the measured overpotential (eq. 11.7), which depends 
on the current density. However, η

theo
 is a measure of the activity and has been found 

in a number of cases to scale with the measured overpotential at a fixed current 
density for different catalysts.

11.8 trendS in electrocatalytic activity: 
the limiting Potential maP

Because of the scaling relations, each of the reaction free energies in the ORR will 
scale with the O or the OH adsorption energy. that means that we can define the 
 limiting potential for each step as a function of the OH adsorption energy:

 
U U GL i L i, ,= ( )∆ OH  

Figure 11.15 shows the limiting potential for the two elementary reaction steps of the 
ORR with the lowest limiting potential as a function of ΔG

OH
. the lowest limiting 

potential for each OH adsorption energy defines the total limiting potential 
(eq. 11.10), and defines a limiting potential volcano.

For strong binding energies of OH, the lowest value of U
L,i

, defining the left leg of 
the volcano, is that for the removal of adsorbed OH (*OH + H+ + e− → H

2
O +*). the 

stronger the OH is bound to the surface, the more difficult it is to remove it. the right 
leg is given by the process of activating molecular O

2
. a weak surface–oxygen bond 
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makes the formation of adsorbed OOH more difficult, and hence, this step becomes 
potential limiting. Pt is close to the top but not at the top. It binds OH (and O) a little 
too strongly. there are alloys of Pt that are closer to the top, but it is clear from this 
analysis that the value of the maximum still corresponds to a sizable overpotential. 
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diagram in Figure 11.12. experimental data for (111) facets measured at the same potential are 
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Stamenkovic et al. (2007), 315, 493 for Pt
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this explains why it has, to date, been impossible to find electrode catalysts for the 
ORR with a really low overpotential.

In Figure 11.15, we also include the result of a full kinetic model giving current 
densities at U = 0.9 V as a function of the OH adsorption energy. the figure also 
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figure 11.17 Measured OeR overpotential for a series of catalysts under similar  conditions. 
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figure 11.18 Structure of adsorbed OH and OOH on RuO
2
(110).
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includes experimentally measured current densities. clearly, both the full kinetic 
model and the much simpler limiting potential analysis describe trends very well, 
and the latter provides a useful way to understand trends in electrocatalytic 
activity.

the position and value of the top of the limiting potential map (and the kinetic 
activity map) are given by the relative positions of the two limiting potential 
lines defining the volcano. that, in turn, is given by the scaling relation between 
the OOH and OH adsorption energies (Fig. 11.16). It turns out that all the metals 
and their oxides give a relationship between the OH and OOH adsorption 
energy of

 ∆ ∆G GOOH OH eV= + ±3 2 0 2. ( . )  (11.14)

Since there are two electron–proton transfers separating *OOH and *OH, even the 
best catalyst on this line will need 3.2 eV/2 = 1.6 eV per electron transfer. that is ca. 
0.4 eV from the equilibrium potential for the reaction and suggests that any materials 
obeying equation (11.14) will have a minimum theoretical overpotential of this size. 
this is consistent with experimental overpotentials observed for ORR (Fig. 11.15) 
and for the OeR (Fig. 11.17).

While it is important to optimize materials along the scaling line—by alloying Pt, 
for instance, or by increasing the number of active sites and their stability—real 
breakthroughs in the search for new ORR and OeR electrocatalysts must come from 
new classes of materials that break the scaling. this may be difficult with planar sur-
faces with only a single type of active site, but it should be possible to engineer more 
interesting surfaces. We need to find ways of stabilizing *OOH (or *OH and *O) 
relative to *OH. Figure 11.18 shows the structure of the two adsorbates on RuO

2
, 

coadsorbates that interact more strongly with the longer OOH molecule than OH 
could lead to a break in the scaling between them.
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Relation of activity to SuRface 
electRonic StRuctuRe

12

As pointed out in the previous chapters, finding the right catalysts for a given  reaction 
is closely linked to understanding the chemical bond formed between the relevant 
adsorbates and the catalyst. The catalytic cycle always involves an initial adsorption 
of reactants, which is then followed by either bond rearrangement or diffusion of the 
reactants. The strength of the bond formed between the adsorbates and the catalyst 
can provide insights regarding the functionality of the catalyst. As we have seen in 
previous chapters, an understanding of the bonds formed at the electronic level is 
essential both for understanding catalytic reactions and for moving toward rational 
design strategies. In this chapter, we will describe what happens when an adsorbate 
interacts with the complex electronic structure of a catalyst surface.

12.1 electRonic StRuctuRe of SolidS

To understand how a given surface (e.g., a metal, semiconductor, or insulator) inter-
acts with an adsorbate, we first need to understand the electronic structure of the 
surface. We also need to understand how interactions between the different constitu-
ents in the surface affect its reactivity.

A solid is composed of a large number of atoms that are grouped together in a 
well-defined crystal structure. Composite states are formed in a solid comprised of 
the outermost atomic states of each individual atom. What happens is that the energy 
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levels are split into bands of energy levels and the states will be delocalized, meaning 
that they will no longer be associated with one atom alone. In order to understand 
these interactions, let us consider a system consisting of just two atoms.

When two separated atoms (with well-defined eigenstates and eigenenergies) are 
brought together, they interact and form a set of composite states. let ψ

A
 and ψ

B
 be 

normalized eigenfunctions with energy eigenvalues ε
A
 and ε

B
 describing the states of 

two noninteracting atoms A and B. When the two atoms approach each other, they 
will start interacting via their overlapping molecular orbitals. In a simple form of 
molecular orbital theory, the eigenfunctions of the composite state are described as a 
linear combination of the eigenfunctions or orbitals of the individual atoms (lCAo). 
In the case of the atoms A and B, we can write this combination as

 ψ ψ ψAB A B= +c c1 2  (12.1)

We introduce the overlap matrix elements S
ij
 and the coupling elements V

ij

 

S
i j

S i j
ij i j

ij= =
=

≠






ψ ψ

δ
|  (12.2)

 
V H V Vij i j ji= = =ψ ψ| |  (12.3)

Here and throughout the chapter, we use the bra and ket vector notation as intro-
duced by P. Dirac to describe a specific state vector of a system. Whenever the scalar 
 product of two state vectors, ⟨ψ | and |φ⟩, is defined, then the complete bracket 
⟨ψ |φ⟩ = ∫ ψ*(r)φ(r)dr will denote a number.

With the simple ansatz, equation (12.1), we can write the Schrödinger equation

 Hψ εψAB AB=  (12.4)

in matrix form

 H cS−( ) =ε 0
 (12.5)

with solutions or the energy eigenvalues

 
ε

ε ε ε ε ε ε ε ε
± =

+ − − − + + +
−

( ) ( ) ( )

( )
A B A B A B A B2 4 4 4

2 1

2 2 2

2

SV SV V S

S

  (12.6)

Typically, the overlap between states is small compared to the other quantities in the 
square root. Thus, to a first-order approximation in S, we can simplify this equation 
to give

 
ε

ε ε ε ε
± =

+ − − +( ) ( )A B A B2 4

2

2 2SV V
 (12.7)
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which can be simplified to give

 
ε

ε ε ε ε
± =

+
+

−





 −

( )A B A B

2 2
2

2

 V SV  (12.8)

In the following, we will look at some simple cases of molecular bonds. for a homo-
nuclear system (e.g., He–He, H–H, n–n, etc.), the expression for the energy levels is 
especially simple. Since in this case ε

A
 = ε

B
, the energies described by equation (12.8) 

reduce to

 ε ε± = −A  | |V SV  (12.9)

Here, S > 0 and V < 0, which shows that both energy levels are shifted up by the repul-
sive term SV and subsequently they split up in two energy levels separated by two 
times the coupling matrix element, as seen schematically in figure 12.1. The upshift 
in energy by − SV stems from the fact that according to the Pauli principle, the states 
of the two atoms must be orthogonal to each other. This is known as Pauli repulsion. 
The formation of two states, one below and one above the average, is a very basic 
property of a quantum system. The lowest state is referred to as the bonding state, 
and the high-lying state is the antibonding state.

let us initially assume that the bond energy between two atoms can be written in 
terms of differences in the one-electron energies of the occupied orbitals in the mol-
ecule and the energy levels of the constituting atoms. Then for two atoms A and B 
brought together to form a molecule AB, we find that the bond strength is given by

 
∆E i j k= − −∑ ∑ ∑

occ

AB

occ

A

occ

Bε ε ε  (12.10)

A A
A2

Bonding

Antibonding

|SV|
2|V|

ε+

εA = ε

ε–

εA = ε

figuRe 12.1 Schematics showing the interaction between two identical molecular orbitals 
with energy ε. The interaction introduces repulsion on each level that is proportional to the 
overlap S, and the subsequent hybridization produces bonding and antibonding states sepa-
rated by two times the coupling matrix element V.
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This is, of course, an oversimplification, since bonding in real systems involves a 
number of other interactions (e.g., electrostatic interactions), but for a qualitative pic-
ture of bonding in molecules, this is a reasonable first approximation. later, we shall 
argue in more detail for why this approximation under some circumstances can be 
very useful.

Clearly, for the molecule to be stable, one requires that the energy of the bonded 
state be lower than that of the individual atoms (i.e., ΔE < 0). for a molecule like H

2
 

where we assume that the energy levels of atomic hydrogen possess one electron of 
energy ε

H
, we can calculate the energy difference:

 ∆E V SV� 2 2 2 2ε ε+ − = − −H | |  (12.11)

from the definition of the coupling elements, V is approximately proportional to the 
overlap of the eigenfunctions such that S = − γV. We can then simplify equation (12.11) 
to be

 ∆E V V� − +2 2 2| | γ  (12.12)

It is seen that the competition between the repulsive term due to the overlapping 
states (2γV2) and the attractive hybridization term (−2|V|) will give rise to a chemical 
bond formed between the two hydrogen atoms. This is illustrated schematically in 
figure 12.2.

In the case of two He atoms approaching each other, we have two electrons per 
energy level. Thus, the bonding and antibonding states will end up being completely 
filled. If we calculate the one-electron energy associated with this bond formation 
(eq. 12.7), we find that the downshift of the bonding state is exactly cancelled out by 

E
ne

rg
y

Eoverlap

E

Ehyb

V

figuRe 12.2 The binding energy in a homonuclear diatomic molecule as a function of the 
coupling matrix element. The total energy is split into a repulsive part due to the orthogonali-
zation of atomic states and an attractive term due to hybridization between states.
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the upshift of the antibonding state. Hence, only the repulsive term from the orbital 
overlap is left, meaning that the He

2
 system is unstable, as expected:

 ∆E SV� 2 2 4 4ε ε ε+ −+ − = −He  (12.13)

for a heteronuclear bond ε
A
 ≠ ε

B
, the energy levels in the composite system are given 

by the expression in equation (12.2). However, in cases where the individual atomic 
energy levels ε

A
 and ε

B
 are well separated relative to the coupling matrix element V, 

we can Taylor expand equation (12.7) if we rearrange it slightly:
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This immediately gives to the second order in V/(ε
A
 − ε

B
) that
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V
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 (12.15)

 
ε ε

ε ε− +
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V
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2

( )
 (12.16)

which shows that when energy levels get further and further apart, the splitting of 
the energy levels due to the interaction decreases. Calculating the bond energy using 
these approximate values for the energy levels, one finds that

 
∆E V SV� − −( ) + −ε εB A

2 24 2  (12.17)

We note that when ε
A
 → ε

B
 or vice versa, the expression for the homonuclear interac-

tion is obtained as expected. In figure 12.3, we provide an overview of some of the 
conclusions that can be drawn from molecular orbital theory.

12.2 the Band StRuctuRe of SolidS

Solids are often composed of a well-defined array of atoms. each atom in the 
array is bound in a potential energy well defined by the surrounding atoms. In the 
following, we shall consider only solids that are free of defects. Bonding bet-
ween atoms in a solid can be understood in much the same way as the bonding 
formed between single molecular orbitals, except that the bonding orbitals are 
treated as bands of bonding and antibonding orbitals, due to the large number of 
overlapping energy levels resulting from the large number of atoms in a crystal 
structure.

A quantitative description of this band structure can be obtained using what 
is known as a “tight-binding” model.
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In the following, we will describe the structure of solids in more qualitative 
terms. let us consider a metal like aluminum to get a feeling for what happens. 
Aluminum has the electronic configuration 1s22s22p63s23p, which sometimes is 
written as [ne]3s23p. This means that aluminum has three electrons circling a neon-
like closed electronic shell.

The s and p electronic states have extended electronic orbitals, and as we saw in 
the molecular orbital approach, this will give large overlaps between electronic states 
and hence large splitting of the bonding and antibonding states. In metals, the atomic 
orbitals are many, and in figure  12.4, we have shown qualitatively how a large 
number of strongly interacting states give rise to a broad continuous band of states. 
This is identical to saying that the s and p electrons are not restricted to specific 
atoms in the lattice and hence are strongly delocalized.

In catalysis, the interest is mainly focused on the transition metals. They distin-
guish themselves from other metals by having partially or completely filled d-shells. 
The orbitals of d electrons have specific shapes and very localized spatial extent. 
Hence, the overlap between d electronic states is much smaller than for s and p 
electronic states. When the interaction is weak, one still gets a continuum of states 
that form a band structure, but the band is much narrower.

In figure 12.5, we show the band structure for two electronically very different 
metals: aluminum (Al) and silver (Ag). The electronic configuration for Ag is 
[Kr]5s4d10 showing that it has 11 electrons outside a krypton-like closed shell.

Atomic
orbital

Molecular
orbital

Antibonding

Bonding

Atomic
orbital

Large overlap

Strong
interaction

Weak
interaction

Small overlap

No
interaction

figuRe 12.3 Schematics of the main conclusions that can be drawn from the lCAo theory. 
The interaction gives rise to splitting of the atomic orbitals into bonding and antibonding states. 
The extent of orbital overlap leads to a larger split between the bonding and antibonding energy 
levels, and the degree of orbital filling determines the strength of the molecular interaction.
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The bands have been calculated using ab initio density functional theory (DfT) 
with 3 valence electrons and 11 valence electrons for Al and Ag, respectively. each 
distinct energy level in the band is called a state; the number of states with a given 
energy, the density of states (DoS), is shown in figure 12.5. for aluminum, we see 
the features of the s- and p-bands and how they extend over the entire energy region. 
The projected DoS shows the atomic level contributions to the band structure, and it 
reveals how delocalized the electronic states are in aluminum.

The behavior of the electrons in Al resembles the behavior of a gas of free elec-
trons in three dimensions. To see this, we recall the energy solutions derived in basic 
quantum mechanics for a free electron gas:

 
ε k

k

m
=
2 2

2
 (12.18)

where k is a wave vector characterizing the state ( p = ℏk is the momentum of the elec-
tron in state k). If we let N be the total number of orbitals within a sphere in k-space 
of volume V

s
 = 4πk3/3 and then using that there is one allowed k-vector per spin state 

within the volume element (2π/L)3, we can solve for N to find N = V
s
/3π2(2mε/ℏ2)3/2. 

This immediately provides an expression for the DoS for a free electron gas in three 
dimensions as

 
DOS s= = 
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ε π
ε

2

2
2 2
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2 1

2


 (12.19)

figuRe 12.4 Schematics showing what happens in the limit of infinitely many overlapping 
orbitals.
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If we compare this result with the DoS for aluminum shown in figure 12.5a, one 
sees that the total density of occupied electronic states has exactly a square root 
dependence on the energy.

for Ag, we again see the broad features from the delocalized sp electrons overlap-
ping in the crystal lattice, but more importantly, we see a large number of almost flat 
bands in the −3 to −6 ev region. These flat bands originate from the localized 
( spatially confined) d electrons. This leads to a clustering of states in this region as 
seen in the DoS in figure 12.5b.

What is important to realize from this section is that interacting valence electrons 
give rise to a band of states due to the splitting of energy levels into bonding and 
antibonding states. The width of the band is proportional to the strength of the cou-
pling, and the coupling is a function of distance and number of neighbors. This means 
that if a crystal lattice is expanded or compressed it will result in a narrowing or 
broadening of states, respectively.

Besides metals, which all have states crossing the fermi level, there are also sys-
tems that have bands that are even more complex than bands in metals. Depending on 
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figuRe 12.5 Calculated band diagrams and corresponding densities of states for the 
face-centered cubic transition metals (a) aluminum (Al) and (b) silver (Ag). The bands are 
plotted along high symmetry directions of the reciprocal lattice in k-space.
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how the different orbitals in the material hybridize with each other, band crossings 
and even band openings can be formed in the near fermi-level region. Due to this, a 
variety of different materials with different properties emerge, such as conductors, 
semiconductors, or insulators.

A material is considered a good conductor if electrons can be excited from the 
valence band below the fermi level to the conduction band above the fermi level, 
where the electron can move around freely in the material. We note that very small 
bandgap or zero bandgap materials are the only materials that make good conductors. 
Hence, materials with a free electron metal band structure with DoS described by 
equation (12.19) are good conductors, and transition metals that have similar sp-
bands as the free electron metals also make good conductors.

The other limit is where the bandgap formed is of such size that it is nearly impos-
sible to excite electrons into the conduction band. As a rule of thumb, materials are 
considered insulators when the bandgap is larger than 5 ev. In figure 12.6a, we have 
shown the band structure and the corresponding projected DoS for diamond, which 
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figuRe 12.6 Calculated band diagrams and corresponding densities of states for (a) bulk 
diamond, which is an insulator, and (b) bulk Si, which is a semiconductor. The bands are plotted 
along high symmetry directions of the reciprocal space for the two crystal structures.
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is a known insulator. our calculations also show that the bandgap is more than 5 ev, 
which is in good agreement with the experimental value of 5.41 ev.

A semiconductor is a material that behaves exactly like an insulator at T = 0 K. 
However, the energy needed for the electrons to jump from the top of the valence 
band to the bottom of the conduction band is such that at nonzero temperature it 
increases appreciably. Clearly, the energy required to make this jump will depend on 
the material and whether there are defects, impurities, or dopants in the material. The 
transition can occur when the materials either absorb a phonon (heat-induced 
transition) or a photon (light-induced transition). These features make semiconduc-
tors very important materials in electronic devices because carrier densities can be 
easily tuned by controlling dopant levels. In figure 12.6b, the calculated band struc-
ture and DoS for silicon are shown. The bandgap is close to 1 ev for this material. 
This is in reasonable agreement with the experimental value of 1.14 ev, thus showing 
that the electrons in Si can be transferred into the conduction band easily.

So far, we have focused on describing the structure of the materials upon which 
our catalytic reactions are supposed to take place. The next step is to look at what 
happens when a molecule approaches the surface of such a material and begins to 
interact with the material and hence forms a chemical bond. The newns–Anderson 
model is a model that describes the hybridization of a single adsorption state on an 
atom or a molecule with the large continuum of states at the surface.

In the following, we will describe the newns–Anderson model in detail.

12.3 the newnS–andeRSon Model

Consider a metal surface with one-electron states |k⟩ with energies ε
k
, and an adsor-

bate with a single valence state |a⟩ of energy ε
a
. When the adsorbate approaches the 

surface from far away to a position just outside, the two sets of states are coupled by 
matrix elements V

ak
 = ⟨a|H|k⟩, where H is the Hamiltonian of the combined system. If 

we expand the solutions |φ
i
 of H in terms of the free adsorbate and surface solutions

 
ϕi ai

k
kic a c k= +∑| | ,  (12.20)

and neglect the overlap ⟨a|k⟩, then the Schrödinger equation can be written as

 Hc ci i i= ε ,  (12.21)

where H
aa

 = ε
a
, H

kk
 = ε

k
, and H

ak
 = V

ak
.

The projection of the DoS on the adsorbate state can be written as

 
n aa

i
i i( ) | ( ),ε ϕ δ ε ε= −∑

2
 (12.22)

where the sum is over the eigenstates of the full Hamiltonian.
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It is more advantageous to consider this quantity since it maps out the evolution of 
the original adsorbate state as it approaches the surface and begins interacting with 
the surface metal states.

using the fact that a lorentzian becomes a delta function in the limit δ → 0+, we 
can rewrite this as

 

n Im
a a

i
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i

i i

i
aaε

π
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ε ε δ π
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− +
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1 1

0

| |
( )  (12.23)

Here, G
aa

(ε) is the projection on the adsorbate state of the single particle Green function
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which is defined by the formal matrix equation

 ( ) ( )ε δ ε− + =H i G I  (12.25)

To get n
a
(ε), we need the imaginary part of the |a〉 projection of G(ε).

using that ε ε δ= + i , equation (12.25) reads
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Considering only equations involving G
aa

, we get

 
G V G V G Gaa a

k
ak ka ka aa k ka⋅ − − = ∧ − + − ⋅ =∑( ) ( )% L %ε ε ε ε1 0  (12.27)

These equations can be solved to give
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Here, we have introduced the self-energy q(ε) = Λ(ε) − iΔ(ε).
Solving for the imaginary part of this function, we find that
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k
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once we have the imaginary part of the complex function for the self-energy, we can 
get the real part directly using the Kramers–Kronig relations
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P denotes the Cauchy principal value, which is a mathematical method that provides 
a way to assign values to otherwise improper integrals.

Inserting these into the expression for the adsorbate-projected DoS, one obtains
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Multiplying the argument by its complex conjugate in the nominator and denomi-
nator and extracting the imaginary part, we get that
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We note that the newns–Anderson model is a tight-binding model that describes 
everything in terms of single-electron energy levels. Hence, binding energies obtained 
from this will not agree with total binding energies calculated using self-consistent 
DfT. As it turns out, in what is known as the frozen density approximation, energy 
changes induced by small variations in coverage on the surface or variations in the 
metal are given by

 
δ δ δE E Eads electron ES= + −1 ,Α Ω  (12.33)

This shows that in this approximation the differences in energy between near-similar 
systems become a sum of single-electron energy differences plus differences in the 
interatomic electrostatic interactions. from this, one can with some authority claim 
that there is a sound theoretical background for using the one-electron energy spectra 
to describe binding energy variations between different systems. In the following, we 
will justify this expression.

12.4 Bond-eneRgy tRendS

We will write the total energy of a system of interacting electrons as proposed origi-
nally by P. Hohenberg and W. Kohn:
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F[ρ] is seen as the sum of the average electrostatic potential, interactions between the 
electrons and the nuclei through the external potential v r( )


, the interactions between 

the nuclei, and the exchange–correlation energy E
xc

[ρ]. T
HK

[ρ] is the kinetic energy of 
a noninteracting gas of electrons moving in an effective potential. The potential is 
chosen so that the solutions to the one-electron Schrödinger equation satisfy that the 
noninteracting system has the same electron density as the real system. under these 
conditions, T

HK
[ρ] can be written as

 
T v r r drHK i[ ] ( ) ( )ρ ε ρ= −∑ ∫

occ
eff

  
 (12.35)

even though the above clearly shows that the one-electron energies are insufficient 
to describe total energies of a system, we shall see that with the right assumption, 
changes in the one-electron energies can yield changes in bond energies correctly.

let’s consider an arbitrary adsorbate a placed outside a metal surface M. In the 
following, we want to estimate the change in adsorption energy of the adsorbate 
when the metal is modified slightly to M . The modifications we want to consider are 
perturbations in the electronic structure induced by, for example, another atom or 
molecule, which is adsorbed on M in the vicinity of a, or if the metal M is exchanged 
for another metal close to M in the periodic table.

We are interested in the difference in adsorption energy in the two cases:
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We divide space up into two regions: a near-adsorbate region A and a metal region Ω 
(see fig. 12.7). In the near-adsorbate region, the change in electron density induced 

A

Ω

figuRe 12.7 Schematics showing the two distinct regions (the region near the adsorbate A 
and the region near the metal Ω) where there is significant perturbation of the system.
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by the change of M to M is expected to be very small; hence, the one-electron poten-
tial will also only be affected slightly by the change. The same arguments hold true 
for the metal region, Ω; hence, the effect of the adsorbate on the metal electronic 
states will be weak.

We can exploit this in connection with the generalized variational principle of 
DfT, which says that a change in the electron density and in the one-electron 
potential will only give rise to changes in the total energy to the second order. In 
region A, the dominant electronic effects are set up by the adsorbate a; hence, we 
choose to apply the same density and potential in this region irrespective of the 
metal.

likewise, we let the density and potential in region Ω be independent of the 
presence of the adsorbate. As a consequence of the variational principle, freezing the 
density and potential in this way will only result in second-order errors in δE

ads
.

We begin by considering the contribution of the F[ρ] term to δE
ads

. In equation 
(12.34), E

xc
[ρ] is mostly described by a local function of position in space. This is not 

generally true of the electrostatic energy contributions.
one could imagine that the adsorbate has a dipole moment; this will give rise to 

an electrostatic potential in metal region Ω. for the present, we shall neglect such 
nonlocal electrostatic interactions between regions Α and Ω. In that case, F[ρ] can be 
divided into contributions from the two regions F = F

A
 + FΩ, and therefore, we can 

write

 

δF F a F F M a F M

F a F F

M M

M M
A A A Alocal = + − − + −( )
+ + − −Ω Ω

[ ] [ ] [ ] [ ]

[ ] [ ]

 

 
Ω [[ ] [ ]

[ ] [ ] [ ] [ ]

[ ]

M a F M

F a F M a F F M

F a

M M

M
A A A A

+ −( )
= + − +( ) − −( )
+ + −

Ω

Ω

 

 FF F M a F MMΩ Ω Ω( ) − + −( )[ ] [ ] [ ]

 

(12.37)

With the assumption that the density in the near-adsorbate region and the metal region 
can be frozen, all terms in parenthesis in the last equation will be zero. What is left 
in the adsorption energy difference is the contribution from the nonlocal electrostatic 
energy from F[ρ]:
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   (12.38)

In a similar way, the frozen potential and density assumption can be used to show that 
the net contribution from the v r r( ) ( )

 ρ  integrals in the kinetic energy difference is 
zero and that only the difference in the one-electron energies calculated with the 
frozen potentials will contribute to the kinetic energy contribution T

HK
[ρ]:
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The difference in adsorption energy is therefore given by the one-electron energy 
difference plus the difference in electrostatic interaction between the surface and the 
adsorbate in the two situations, and hence, one obtains the result in equation (12.44).

The main result from the newns–Anderson model describes how a single adsor-
bate state |a〉 with energy ε

a
 develops as it approaches a surface with a large number 

of states |k〉 k ∈ {1, 2, …, n}. Here, we again use the bra and ket vector notation to 
describe a specific state of the system.

We shall study a couple of simple cases that will help us understand how different 
surface band structures affect the adsorbate and hence how strong the adsorbate 
interacts with the surface. The expression describing the effect on the adsorbate state 
upon interaction with the surface in its simplest form is given by

 
na

a

( )
( )

( ) ( )( )
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π
ε

ε ε ε ε
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− − +
1

2 2

∆
Λ ∆

 (12.40)

where Δ(ε) can be regarded as a projection of the metal DoS around the adsorbate 
and the function Λ(ε) is given as a relatively simple transform of Δ(ε).

We saw earlier how aluminum had a band structure that looked much like what 
one would expect for a three-dimensional free electron gas. This is typical for s- 
and p-bands where the electrons are delocalized. for higher energies, the surface 
electronic wave functions will have an increasing oscillatory behavior, and hence, the 
atom-projected DoS will eventually go to zero because the overlapping integrals 
average out.

In the following, we will approximate the sp electronic band structure with a 
semielliptic band that initially follows the ε  behavior and goes to zero for higher 
energies. When the adsorbate is far from the surface, its electronic distributions are 
narrow and are best described by delta functions. As it approaches the surface and 
starts to interact with the delocalized electronic surface states, the spectral distribu-
tion will evolve, and during a time length that is characteristic for the specific system, 
the distribution would have undergone a broadening and a shift (this depends highly 
on the distribution Δ(ε)) that is comparable to the dispersion. To see this, we will 
look at a case where the metal DoS projected around the adsorbate is a constant over 
the entire energy range: Δ(ε) = Δ

0
. later, we will return to the case where Δ(ε) is 

described by a semielliptic distribution. The transformation of Δ(ε) = Δ
0
 to determine 

Λ(ε) becomes an integral over an odd function; hence, Λ(ε) = 0 and
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 (12.41)

This is just an expression for a lorentzian distribution centered at ε
a
 and of width Δ

0
, 

and the broadening is simply due to the finite lifetime of the electron in its adsorbate 
state.

for the semielliptic case, the adsorbate state will undergo the same broadening. 
But now, due to the finite width of the metal DoS, the maximum of n

a
(ε) will shift 

downward. The energy value where n
a
(ε) has its maximum is when ε − ε

a
 − Λ(ε) = 0, 
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and the downshift is indicative of stronger bonding. In figure 12.8, we have shown 
schematically how this interaction comes about.

Transition metals both have a broad sp-band that leads to the aforementioned 
broadening and downshift. However, they also have the very localized d electronic 
states that interact much weaker with the adsorbate than the s and p electronic 
states. But as we shall see, due to the similarities between the sp-states from one 
transition metal to the next, the structure of the d-band becomes a very important 
factor that can help understand differences between the catalytic activities of 
transition metals.

In figure  12.9, we have shown, using a semielliptic approach, how a narrow 
d-band leads to the formation of bonding and antibonding states. The relative density 
of d-states is much larger than for the sp-states, but due to the close relation between 
the width of the formed band and the coupling between the adsorbate levels and the 
surface states, the interaction with the d-band gives less impact on the bond strength 
than the sp-band does.

As we can see from ε − ε
a
 − Λ(ε) = 0, there are now three energy solutions. The 

lower energy solution is the downshifted bonding state, the middle solution is a weak 
state that gives no bonding contribution, and finally, we have the high-energy state 
also known as the upshifted antibonding state. The resemblance with molecular 
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figuRe 12.8 Plot showing the atom-projected DoS n
a
(ε) for an adsorbate approaching the 

surface with a single energy level initially at −4 ev below the fermi level defined by the sur-
face. The local projection of the surface DoS around the adsorbate level Δ(ε) assuming a 
semielliptic band structure and the corresponding transform Λ(ε) is shown to illustrate why the 
adsorbate level broadens and shifts down upon interaction with a surface of very delocalized 
electronic states like the sp electrons. We specifically assume that the surface states behave like 
a free electron gas for low energies ∆( )ε ε∝  and that they fall off at higher energies due to 
the decrease in overlap between the adsorbate state and these surface states.
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orbital theory is striking, and the surface d-states affect the adsorbate energy levels in 
much the same way as a molecular orbital. furthermore, relative positions and filling 
of states are among the factors that determine the strength of the chemical bond 
formed, which is also the case for molecular orbital theory.

let us look at the newns–Anderson model in more detail. We do that by varying 
the parameters in the model separately. There are three terms that define the bonding 
between an adsorbate state and a surface in the newns–Anderson model: (1) the 
structure of the local projection of the surface DoS around the adsorbate Δ(ε), (2) the 
coupling strength V, and (3) the energy position of the adsorbate level ε

a
 relative to 

the fermi level.
In figure 12.10a, we have shown explicitly how variations in the width of the local 

projection of the surface DoS affect the adsorbate-projected DoS. The adsorbate-
projected DoS is chosen to be a delta function located at −5 ev before interaction. The 
surface DoS is for simplicity assumed to have the form of a semiellipse, and the width 
is given as the second moment centered at the mean of the semielliptic distribution.

The first plot on the left in figure 12.10a shows two distinct peaks: one at low 
energy, which is very much like the delta function of the noninteraction adsorbate 
state, and one at high energy just at the upper edge of the local projection of the sur-
face DoS. This situation is similar to the coupling of two discrete levels in the weak-
coupling limit. The relative strength of the two peaks is due to the large separation 
between the adsorbate state and the surface states.
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figuRe 12.9 Plot showing the atom-projected DoS n
a
(ε) for an adsorbate approaching the 

surface with a single energy level initially at −3 ev below the fermi level defined by the sur-
face. The local projection of the surface DoS around the adsorbate level Δ(ε) assuming a 
semielliptic band structure and the corresponding transform Λ(ε) is shown to illustrate why the 
adsorbate level splits into bonding and antibonding states upon interaction with the surface 
states. The line is shown to explicitly indicate the three solutions to d(n

a
(ε))/dε = 0.
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As the surface states are broadened (moving to the right in the sequence in 
fig. 12.10a), the adsorbate states begin to overlap more and more with the surface 
states, and the number of states that are pushed up in energy increases. When the 
bandwidth becomes large enough to actually embed the adsorbate state, the inter-
action produces a lorentzian centered at the energy ε

a
, thus resembling the inter-

action between an adsorbate and the delocalized sp electrons, as discussed 
earlier.

let us see what happens if we freeze the width of the surface states and the relative 
position between the adsorbate and the surface states and allow the coupling strength 
between the states to vary. We choose a situation where the adsorbate DoS is located 
at the bottom of the band of surface states. Hence, initially, the adsorbate is already 
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figuRe 12.10 Plot showing how the individual relevant parameters in the newns–
Anderson model influence the behavior of the adsorbate-projected DoS. In (a), we vary the 
width of the local projection of the surface states Δ(ε) and keep the coupling strength V and 
the relative position of the adsorbate level and the surface band fixed. Width increases from 
left to right. In (b), we see how variations in the coupling strength V affect the bonding 
behavior for fixed width and relative position. Strength increases left to right. finally, in (c), 
we look at variations of the relative position of the distribution and how that affects the 
bonding for fixed width and coupling strength. In (c), we have included the fermi level 
(dashed line) to see explicitly how antibonding states above the fermi level are depleted as the 
distance between the adsorbate level and the mean of the band increases. Relative position 
increases left to right.
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interacting with the surface states, but we still see only a single peak. As we increase 
the coupling strength (moving right in fig.  12.10b) and V ~ |ε

a
|, we see that the 

 adsorbate states get smeared out over the entire surface band. eventually when 
V ≫ |ε

a
|, we are in the strong coupling limit where the interaction approaches the 

molecular two-level interaction picture, and two distinct peaks are formed above and 
below the surface DoS.

finally, we freeze out the coupling strength and the width of the surface states and 
look at variations due to changes in the separation between the adsorbate state and 
the surface states. We define the position of the surface states by the statistical mean 
μ of the distribution. So far, we have used μ = 0, but in the following, we will intro-
duce a fermi level and set that level as our new zero. now, the mean relative to the 
fermi level and the width of the surface distribution define the filling of the band of 
surface states; we can explicitly see what happens to the interaction energy as the 
relative position of the adsorbate and surface states shift. let’s set ε

d
 = μ. now when 

|ε
d
 − ε

a
| increases as the surface states shift to higher energies, as seen when moving 

right in figure  12.10c, the number of adsorbate-projected states above the fermi 
level decreases. This depletion of the antibonding states will lead to an increase in the 
bond strength. It reaches a maximum when the band is half filled.

In the next section, we shall combine what we have learned from the newns–
Anderson and tight-binding models and apply that as a basis for understanding the 
choice of the descriptors that we use to explain trends in surface reactivity.

12.5 Binding eneRgieS uSing the newnS–andeRSon Model

until now, we have focused mainly on the induced changes on the adsorbate- 
projected DoS as it interacts with the metal states. We have estimated the bond 
strength using the molecular orbital theory and found that one can get qualitative 
agreement with this very simple approach.

Given the value of the coupling strength V, the renormalized energy level ε
a
, and 

the structure Δ(ε) and filling f of the band, we can determine the total energy. for the 
unperturbed metal system, the total energy is given by

 
E d

EF

metal =
−∞
∫ερ ε ε( )  (12.42)

As the adsorbate approaches the surface, it will perturb the system and hence 
induce a change in the overall density of surface states δρ ε ρ ε ρ ε( ) ( ( ) ( ))= − . Here, 
ρ ε( ) is the density of the metal after the interaction with the adsorbate. The change 
in the total energy of the system can be obtained from integration of εδρ(ε) over 
occupied states.

Before we perform the integration, it is, however, important to note that the effect 
of the perturbation is to introduce some extra states below the fermi level: δN. These 
are states that, because of the adsorbate–metal interaction event, have been removed 
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from the fermi level and introduced into the valence band. The binding energy is 
now given by

 
E d N E n E

E

F a F a

F

bind = ⋅ − ⋅ ⋅ + −
−∞
∫2 2εδρ ε ε δ ε( ) ( )  (12.43)

Here, we have explicitly added a factor of 2 for spin degeneracy, and we have taken 
the n

a
 adsorbate electrons of initial energy ε

a
 into account by depositing them at the 

fermi level and subtracting their energy before bonding.
Choosing E

F
 = 0, the binding energy expression can be written such that

 
E d na abind = −

−∞
∫

2 0

π
η ε ε ε( ) ,  (12.44)

where η(ε) = arctan(Δ(ε)/ε − ε
a
 − Λ(ε)) is an explicit function of the real and imaginary 

parts of the self-energy expression derived above and given by equations (12.29) 
and (12.30).

We can now estimate the bond energy using equation (12.44), and we can show 
that the simple d-band model is able to describe variations in bonding. This is seen in 
figure 8.5, where the trends in dissociative chemisorption energies for atomic oxygen 
on a series of 4d transition metals are shown. Both experiments and DfT calculations 
show that the bonding becomes stronger (i.e., ΔE

ads
 becomes more negative) as we 

move left in the periodic table.
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