MOF导电性提高1万倍,杨培东这三位大牛这么简单就做到了!
明月 纳米人 2018-06-05

0.jpg

第一作者:Michael L. Aubrey, Brian M. Wiers, Sean C. Andrews

通讯作者:Gary J. Long, Peidong Yang, Jeffrey R. Long

通讯单位:加州大学伯克利分校(美国)

 

 

研究亮点:

1.通过K离子的引入实现能带离域,使MOF导电性和迁移率大幅提升,可媲美有机高分子。

2.基于这种高导电性和高迁移率的MOFs FET,为实现新型多孔导体器件开辟了一条通用之路。

 

作为一种比表面积高达7000 m2 g–1的晶态多孔材料,MOFs在气体存储、工业分离、催化以及水净化等诸多领域表现出优异的应用前景。

 

如何提高MOFs的导电性和迁移率,使之进入储能和电子器件领域并有所作为,成为了众多科学家研究的重要目标。

 

有鉴于此,加州大学伯克利分校Jeffrey R. Long、杨培东和Gary J. Long等团队合作,通过K+的引入实现能带离域,使MOF导电性和迁移率大幅提升,可媲美有机高分子。

 

1.jpg

图1. K诱导能带离域

 

研究人员以Fe2(BDP)3为研究目标,通过K+的引入合成得到Fe2(BDP)3部分还原的KxFe2(BDP)3(0 ≤ x ≤ 2)型MOFs材料。这种材料在母体框架内表现出全部的电荷离域,电荷迁移率可媲美陶瓷和高分子材料。

 2.jpg


图2. Fe2(BDP)3的结构特征

 

通过谱学方法测试、理论计算以及单个-微晶场效应晶体管测试,研究人员发现在单晶轴上,这种全新的MOFs比未引入K+之前的MOFs导电性提高了接近1万倍。

 

研究人员认为,这种优异的性能主要是因为,K+的引入产生了IVCT(混合价态电荷传递)过程,极大地增强了电荷离域。在K+引入之前,电子波函数限域在金属离子和有机配体上,几乎不发生重叠。引入K+之后,MOFs之间相互作用显著增强,通过将Fe3+部分还原成Fe2+,实现了长程电荷离域,导电性和迁移率得到增强。

 

基于FET的测试研究表明,对于KxFe2(BDP)3(0 ≤ x ≤ 2),电荷离域和迁移率与K的含量x成一定比例关系。当x=0.98时,K0.98 Fe2(BDP)3可实现最高电子迁移率为0.84 cm2 V–1 s–1,而最高两点导电性比Fe2(BDP)3提高了接近1万倍。

 

3.jpg


图3. KxFe2(BDP)3电荷传递性能测试

 

总之,这项研究为提高MOFs导电性提供了一种简便的通用策略,为MOFs进军电子器件和储能领域带来了新的希望。

 



参考文献:

1. Michael L. Aubrey, Brian M. Wiers, Sean C. Andrews, Gary J. Long, Peidong Yang, Jeffrey R. Long et al. Electron delocalization and charge mobility as a function of reduction in a metal–organic framework. Nature Materials 2018.

2. A. Alec Talin & François Léonard. Reducing localization. Nature Materials 2018.

加载更多
9060

版权声明:

1) 本文仅代表原作者观点,不代表本平台立场,请批判性阅读! 2) 本文内容若存在版权问题,请联系我们及时处理。 3) 除特别说明,本文版权归纳米人工作室所有,翻版必究!
纳米人
你好测试
copryright 2016 纳米人 闽ICP备16031428号-1

关注公众号