Science:镁-四胺MOF材料高效CO2吸附
纳米技术 纳米 2020-07-24

虽然,天然气比煤释放的CO2较少,但是对天然气的碳进行捕获从而尽量避免释放炔更困难,因为天然气燃烧过程中释放的CO2浓度是煤燃烧过程中浓度的1/3,同时含有大量O2,H2O等气体。因此,加州大学伯克利分校Jeffrey R. Long等报道了四胺修饰的有机镁金属框架化合物材料中具有碳捕获、蒸气再生作用的双重作用。通过两步协同CO2吸附作用实现了更高的CO2捕获能力和吸附焓变化。该材料能够从潮湿的空气中捕获CO2气体,同时能够在蒸气作用中进行重生。作者发现该过程比温度处理过程、压力调控处理过程有更高的经济性。

天然气目前是美国主要的电能来源,将天然气热电厂释放的CO2进行捕获能有效的降低碳排放量。基于双胺修饰的MOF材料在两步协同CO2吸附中的作用,作者开发了四胺修饰的镁基MOF材料,实现了在更严苛的条件中用于捕捉天然气燃烧后废气中的CO2

本文要点:

(1)

通过不同碳数的四胺(N,N'-双(3-氨基丙基)-1,3-二氨基丙烷(N,N′-bis(3-aminopropyl)-1,3-diaminopropane)、N,N'-双(3-氨基丙基)-1,4-二氨基丁烷(N,N′-bis(3-aminopropyl)-1,4-diaminobutane))和Mg的4,4′-二氧基联苯-3,3′-二羧酸盐(4,4′-dioxidobiphenyl-3,3′-dicarboxylate)结合生成四胺化的Mg2(dobpdc)(3-3-3)、Mg2(dobpdc)(3-4-3)。作者发现3-3-3和3-4-3中分别由于分子内、分子间氢键作用导致了更好的热稳定性。

(2)

作者发现Mg2(dobpdc)(3-4-3)展现出在仅仅含有10 %CO2气氛中实现了高达90 %的CO2捕获率。通过Clausius-Clapeyron方程计算作者发现,Mg2(dobpdc)(3-4-3)展现了较高的CO2吸附焓,因此在CO2捕获过程中耗能更低。此外,作者发现Mg2(dobpdc)(3-4-3)在环境压力中的吸附脱附回滞作用最低。

(3)

吸附机理研究。通过红外IR、固体NMR方法对Mg2(dobpdc)(3-4-3)的CO2吸附机理进行研究,作者发现原位红外吸附实验中发现1339 cm-1的C-N键、1689 cm-1的C-O键,同时在120 ℃的吸附平衡说明氨基甲酸铵物种是协同吸附作用的关键。作者在N-H振动区域发现相邻的氨基甲酸铵之间存在氢键作用。通过固体NMR测试,作者发现1.04 bar 13CO2 13C NMR中出现了162.6 ppm的峰,对应于氨基甲酸铵物种。这个单重峰说明在Mg基MOF材料中所有的吸附CO2有相同的化学环境。通过异核相关NMR测试,作者发现CO2和一级胺基反应和氨基甲酸酯附近的二级胺进行反应。以上结果说明Mg2(dobpdc)(3-4-3)中两步吸附协同机理。

image.png

image.png


参考文献

Eugene J. Kim, Rebecca L. Siegelman, Henry Z. H. Jiang, Alexander C. Forse, Jung-Hoon Lee, Jeffrey D. Martell, Phillip J. Milner, Joseph M. Falkowski, Jeffrey B. Neaton, Jeffrey A. Reimer, Simon C. Weston, Jeffrey R. Long*

Cooperative carbon capture and steam regeneration with tetraamine-appended metal–organic frameworks, Science 2020

DOI:10.1126/science.abb3976

https://science.sciencemag.org/content/369/6502/392

   

加载更多
6718

版权声明:

1) 本文仅代表原作者观点,不代表本平台立场,请批判性阅读! 2) 本文内容若存在版权问题,请联系我们及时处理。 3) 除特别说明,本文版权归纳米人工作室所有,翻版必究!
纳米技术

介绍材料新发展和新技术

发布文章:7530篇 阅读次数:9338280
纳米人
你好测试
copryright 2016 纳米人 闽ICP备16031428号-1

关注公众号